Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Melting and fragmentation of nickel nanoparticles: Molecular-dynamics simulations
Download
index.pdf
Date
2000-12-01
Author
Gunes, B
Erkoç, Şakir
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
189
views
0
downloads
Cite This
Melting and fragmentation behaviors of Ni-429 cluster have been studied with molecular-dynamics simulations using a size-dependent empirical model potential energy function. To monitor thermal behaviors of the cluster, we calculated some physical quantities such as average potential energy per atom, specific heat, radial atomic distribution, bond length distribution, average interatomic distance, nearest neighbor distance and average coordination number as a function of temperature. The roles of the surface and core atoms in the melting and fragmentation process of the cluster are also investigated by considering the surface and the bulk coordination numbers of the cluster.
Subject Keywords
Molecular-dynamics
,
Nanoparticles
,
Empirical potentials
,
Fragmentation
,
Nickel clusters
,
Melting
URI
https://hdl.handle.net/11511/51316
Journal
INTERNATIONAL JOURNAL OF MODERN PHYSICS C
DOI
https://doi.org/10.1142/s0129183100001437
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Molecular-dynamics simulations of nickel clusters
Erkoç, Şakir; Gunes, B; Gunes, P (2000-07-01)
Structural stability and energetics of nickel clusters, Nih (N = 3 - 459), have been inves tigated by molecular-dynamics simulations, A size-dependent empirical model potential energy function has been used in the simulations. Stable structures of the microclusters with sizes N = 3 - 55 and clusters generated from fee crystal structure with sizes N = 79 - 459 have been determined by molecular-dynamics simulations. It has been found that the fivefold symmetry appears on the surface of the spherical clusters....
Cluster, surface and bulk properties of ZnCd binary alloys: Molecular-dynamics simulations
Erkoç, Şakir (2005-01-01)
The structural and electronic properties of isolated neutral Zn Cd-n clusters for m+n <= 3 have been investigated by performing density functional theory calculations at B3LYP level. The optimum geometries, vibrational frequencies, electronic structures, and the possible dissosiation channels of the clusters considered have been obtained. An empirical many-body potential energy function (PEF), which comprices two- and three-body atomic interactions, has been developed to investigate the structural features ...
Mechanical properties of CdZnTe nanowires under uniaxial stretching and compression: A molecular dynamics simulation study
Kurban, Mustafa; Erkoç, Şakir (2016-09-01)
Structural and mechanical properties of ternary CdZnTe nanowires have been investigated by performing molecular dynamics simulations using an atomistic potential. The simulation procedures are carried out as uniaxial stretching and compression at 1 K and 300 K. The results demonstrate that the mechanical properties of CdZnTe ternary nanowires show significantly a dependence on size and temperature under uniaxial stretching and compression.
Empirical many-body potential energy functions used in computer simulations of condensed matter properties
Erkoç, Şakir (1997-01-01)
Empirical many-body potential energy functions (EMBPEFs) are extensively used in atomistic computer simulations, especially in molecular dynamics and Monte-Carlo methods. There are several EMBPEFs used in the literature for different purposes, some of these functions are suitable for bulk and surface properties, and some of them are suitable for cluster properties. In this article the EMBPEFs used in the computer simulation applications for condensed matter properties will be reviewed.
Molecular-dynamics simulation of radiation damage on copper clusters
Erkoç, Şakir (2000-07-01)
The effect of radiation damage on copper clusters has been investigated by performing molecular-dynamics simulation using empirical potential energy function for interaction between copper atoms. The external radiation is modeled by giving extra kinetic energy in the range of 5- 50 eV to initially chosen atom in the cluster. It has been found that the atom having extra kinetic energy dissociates independently from the amount of given energy in the studied range.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Gunes and Ş. Erkoç, “Melting and fragmentation of nickel nanoparticles: Molecular-dynamics simulations,”
INTERNATIONAL JOURNAL OF MODERN PHYSICS C
, pp. 1567–1580, 2000, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/51316.