Stereoregular polymerization of methylmethacrylate by atom transfer radical polymerization

Aran, B
Usanmaz, Ali
Methyl methacrylate (MMA) was polymerized by the atom transfer radical polymerization (ATRP) method to obtain living low molecular weight polymers. The initiator was p-toluenesulfonylchloride and the catalyst ligand complex system was CuCl-4,4'dimethyl 2,2'bipyridine. Polymers with controlled molecular weight were obtained. The polymer chains were shown by NMR spectrum to be mostly syndiotactic. The molecular weight distributions were measured by the GPC method. The K and a constants in [eta] = KM alpha equation were measured as 9.13 x 10(-5) and 0.74, respectively. FT- IR and X-Ray results showed steororegularity in polymer chains. The thermal properties were studied by DSC and molecular weight-glass transition temperature relations were determined.


Polypyrrole grafts synthesized via electrochemical polymerization
Balci, N; Toppare, Levent Kamil; Akbulut, Ural; Stanke, D; Hallensleben, ML (Informa UK Limited, 1998-01-01)
Electrically conducting polypyrrole grafts with poly[(methyl meth acrylate)-co-(2-(N-pyrrolyl) ethyl methacrylate)] (PMMA-co-PEMA) were synthesized by constant potential electrolysis. Cyclic Voltammetry, DSC, TGA, SEM and elemental analysis were used in order to characterize the free standing films. Conductivities of the polymers were measured by a four-probe technique.
Carbothermic formation of boron nitride
Aydogdu, A; Sevinc, N (Elsevier BV, 2003-01-01)
Formation of boron nitride by reaction of boric oxide with carbon and nitrogen was studied. It was found from the results of experiments conducted by holding BA-activated C mixtures under a flowing nitrogen atmosphere that formation of boron nitride was complete in 120 min at 1500 degreesC. After cleaning the reaction product from the ash of the activated carbon and from the unreacted B2O3 pure BN powder was obtained. B4C was found to exist as an intermediate species in the reaction products of the experime...
Conducting Polymer Composites of Multiwalled Carbon Nanotube Filled Doped Polyaniline
Yilmaz, Faris; Kucukyavuz, Zuhal (Wiley, 2009-01-15)
A multiwalled carbon nanotube (c-MWNT)/polyaniline (PANI) composite was synthesized by an in situ chemical oxidative polymerization process. With the carbon nanotube loading increased from 0 to 30 wt %,, the conductivity also increased and became weakly temperature-dependent. Fourier transform infrared spectroscopy studies showed that the synthesis by an in situ process led to effective site-selective interactions between the quinoid ring of the PANI and the multiwalled nanotubes, facilitating charge-transf...
Preparation of a conducting flexible material from silane coupling agent and hydroxyl terminated polybutadiene rubber by hydrolysis and condensation
Karatas, Y; Toppare, Levent Kamil; Tincer, T (Informa UK Limited, 2003-01-01)
Synthesis and characterization of a flexible polymer produced from silane coupling agent (SCA) and hydroxyl terminated polybutadiene (HTPB) were performed. Mechanical properties of chemically and electrochemically prepared conducting composites synthesized from this polymer were investigated. Conductivities of the composites were also measured. Polypyrrole enhanced the mechanical properties of the chemically prepared conducting composite. Doping with iodine greatly changed the conductivity of the composite....
Kinetic model for alpha-tricalcium phosphate hydrolysis
Durucan, Caner (Wiley, 2002-08-01)
A mechanistic model for the kinetics of hydrolysis of alpha-tricalcium phosphate (alpha-Ca-3(PO4)(2) or alpha-TCP) to hydroxyapatite (Ca10-x(HPO4)(x)(PO4)(6-x)(OH)(2-x) or HAp) has been developed. The model is based on experimental hydrolysis rate data obtained using isothermal calorimetry. Analysis of the kinetic data according to the general kinetics models in terms of the fractional degree of reaction and time suggests the hydrolysis to be controlled by different rate-limiting mechanisms as reaction proc...
Citation Formats
B. Aran and A. Usanmaz, “Stereoregular polymerization of methylmethacrylate by atom transfer radical polymerization,” JOURNAL OF MACROMOLECULAR SCIENCE-PURE AND APPLIED CHEMISTRY, pp. 233–245, 2006, Accessed: 00, 2020. [Online]. Available: