Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Sturmian comparison theory for linear and half-linear impulsive differential equations
Date
2005-11-30
Author
Ozbekler, A.
Zafer, Ağacık
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
199
views
0
downloads
Cite This
In this paper, we investigate Sturmian comparison theory for second-order half-linear differential equations with fixed moments of impulse actions. It is shown that impulse actions may greatly change the behavior of solutions in comparison. Several oscillation criteria are also derived to illustrate the results.
Subject Keywords
Applied Mathematics
,
Analysis
URI
https://hdl.handle.net/11511/51546
Journal
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS
DOI
https://doi.org/10.1016/j.na.2005.01.087
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
Nonautonomous Bifurcations in Nonlinear Impulsive Systems
Akhmet, Marat (Springer Science and Business Media LLC, 2020-01-01)
In this paper, we study existence of the bounded solutions and asymptotic behavior of an impulsive Bernoulli equations. Nonautonomous pitchfork and transcritical bifurcation scenarios are investigated. An examples with numerical simulations are given to illustrate our results.
Picone's formula for linear non-selfadjoint impulsive differential equations
Ozbekler, A.; Zafer, Ağacık (Elsevier BV, 2006-07-15)
In this paper, we derive a Picone type formula for second-order linear non-selfadjoint impulsive differential equations having fixed moments of impulse actions, and obtain a Wirtinger type inequality, a Leighton type comparison theorem, and a Sturm-Picone comparison theorem for such equations. Moreover, several oscillation criteria are also derived as applications. (c) 2005 Elsevier Inc. All rights reserved.
Integral manifolds of differential equations with piecewise constant argument of generalized type
Akhmet, Marat (Elsevier BV, 2007-01-15)
In this paper we introduce a general type of differential equations with piecewise constant argument (EPCAG). The existence of global integral manifolds of the quasilinear EPCAG is established when the associated linear homogeneous system has an exponential dichotomy. The smoothness of the manifolds is investigated. The existence of bounded and periodic solutions is considered. A new technique of investigation of equations with piecewise argument, based on an integral representation formula, is proposed. Ap...
Matrix measure approach to Lyapunov-type inequalities for linear Hamiltonian systems with impulse effect
Kayar, Zeynep; Zafer, Ağacık (Elsevier BV, 2016-08-01)
We present new Lyapunov-type inequalities for Hamiltonian systems, consisting of 2n-first-order linear impulsive differential equations, by making use of matrix measure approach. The matrix measure estimates of fundamental matrices of linear impulsive systems are crucial in obtaining sharp inequalities. To illustrate usefulness of the inequalities we have derived new disconjugacy criteria for Hamiltonian systems under impulse effect and obtained new lower bound estimates for eigenvalues of impulsive eigenva...
Asymptotic behavior of Markov semigroups on preduals of von Neumann algebras
Ernel'yanov, EY; Wolff, MPH (Elsevier BV, 2006-02-15)
We develop a new approach for investigation of asymptotic behavior of Markov semigroup on preduals of von Neumann algebras. With using of our technique we establish several results about mean ergodicity, statistical stability, and constrictiviness of Markov semigroups. (c) 2005 Elsevier Inc. All rights reserved.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Ozbekler and A. Zafer, “Sturmian comparison theory for linear and half-linear impulsive differential equations,”
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS
, pp. 0–0, 2005, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/51546.