Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A NEW EMPIRICAL MANY-BODY POTENTIAL-ENERGY FUNCTION - APPLICATION TO MICROCLUSTERS
Date
1989-04-01
Author
Erkoç, Şakir
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
199
views
0
downloads
Cite This
A new empirical many‐body potential energy function is proposed which comprises two‐ and three‐body interactions. The two‐body potential is a kind of hybrid function and the three‐body potential is expressed in terms of the two‐body interactions. The parameters of the potential energy function can be easily evaluated using dimer data and the bulk cohesive energy of the system considered. The proposed potential energy function is parameterized for several elements in f.c.c., b.c.c., and diamond structures and is applied for the investigation of structural stability and energetics of microclusters. The agreement between the present results and literature values is good.
Subject Keywords
Electronic, Optical and Magnetic Materials
,
Condensed Matter Physics
URI
https://hdl.handle.net/11511/51786
Journal
PHYSICA STATUS SOLIDI B-BASIC RESEARCH
DOI
https://doi.org/10.1002/pssb.2221520206
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
A NEW CLASS OF EMPIRICAL MANY-BODY POTENTIAL-ENERGY FUNCTIONS FOR BULK AND CLUSTER PROPERTIES
Erkoç, Şakir (Wiley, 1992-06-01)
A new empirical many-body potential energy function (PEF) is proposed, which comprices two- and three-body atomic interactions. The two-body potential is a kind of hybrid function and the three-body potential is formed by additive and nonadditive functions. The additive part is expressed in terms of two-body interactions, and the nonadditive part is expressed as triple-dipole function. The PEF satisfies bulk cohesive energy, bulk stability condition, and bulk modulus. The PEF is parameterized for gold, silv...
A new empirical many-body potential energy function application to microclusters: elements in B.C.C., F.C.C., and H.C.P. structures
Erkoç, Sevilay (Wiley, 1989-10-1)
A new empirical many‐body potential energy function (PEF) has been proposed recently, and it has been successfully applied to microclusters of various elements. Using the new PEF the microcluster calculations are extended to several elements in b.c.c., f.c.c., and h.c.p. structures.
Critical behaviour of the polarization, tilt angle, electric susceptibility and the specific heat close to the SmA-ferroelectric SmC (SmC*) phase transitions
Yurtseven, Hasan Hamit; Kilit, E. (Informa UK Limited, 2006-01-01)
This study gives the temperature dependence of the two order parameters, namely, polarization P and the tilt angle theta, when there is a biquadratic coupling P-2 theta(2) in the expansion of the Landau free energy. This applies to the electric-field-induced SmA-Ferro-Electric SmC (SmC*) phase transition. From this expansion of the Landau free energy in terms of the polarization and the tilt angle, we obtain the temperature dependence of the electric susceptibility chi and the electric field dependence of t...
Molecular-dynamics simulations of surface and bulk properties of Zn, Cd, and ZnCd systems
Amirouche, L; Erkoç, Şakir (Wiley, 2004-02-01)
Surface and bulk properties of Zn, Cd, and ZnCd systems have been investigated by performing molecular-dynamics simulations using a recently developed empirical many-body potential energy function for these systems, which comprices two- and three-body atomic interactions. Surface reconstruction and multilayer relaxation on clean surfaces, adatom on surface, substitutional atom on surface and bulk materials, and vacancy on surface and bulk materials have been studied extensively. (C) 2004 WILEY-VCH Verlag Gm...
Spin-correlation effects in a one-dimensional electron gas
Tas, M; Tomak, Mehmet (American Physical Society (APS), 2004-12-01)
The Singwi-Sjolander-Tosi-Land (SSTL) approach is generalized to study the spin-correlation effects in a one-dimensional (1D) electron gas. It is shown that the SSTL approach yields different and interesting results compared with the more widely used Singwi-Tosi-Land-Sjolander (STLS) approach. We find out that the self-consistent field approaches, STLS and SSTL, predict a Bloch transition for 1D electron-gas systems at low electron densities.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ş. Erkoç, “A NEW EMPIRICAL MANY-BODY POTENTIAL-ENERGY FUNCTION - APPLICATION TO MICROCLUSTERS,”
PHYSICA STATUS SOLIDI B-BASIC RESEARCH
, pp. 447–454, 1989, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/51786.