Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Metal atom endohedrally doped C-20 cage structure: (X@C-20; X = Ni, Fe, Co)
Date
2005-10-01
Author
Erkoç, Şakir
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
73
views
0
downloads
Cite This
The C-20 cage structure (X@C-20; X = Fe, Co, Ni) endohedrally doped with a metal atom has been investigated theoretically by performing molecular-mechanics optimizations, and semi-empirical PM3 level and density functional theory B3LYP/6-31G* level calculations within UHF formalism. Calculations have been performed with different spin configurations for the neutral systems.
Subject Keywords
Mathematical Physics
,
Computational Theory and Mathematics
,
General Physics and Astronomy
,
Statistical and Nonlinear Physics
,
Computer Science Applications
URI
https://hdl.handle.net/11511/51816
Journal
INTERNATIONAL JOURNAL OF MODERN PHYSICS C
DOI
https://doi.org/10.1142/s0129183105008138
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Electronic structure calculations of low-dimensional semiconductor structures using B-spline basis functions
Dikmen, B; Tomak, Mehmet (World Scientific Pub Co Pte Lt, 2005-02-01)
An efficient method for the low-dimensional semiconductor structure is investigated. The method is applied to symmetric double rectangular quantum well as an example. A basis set of Cubic B-Splines is used as localized basis functions. The method compares well with analytical solutions and the finite difference method.
Structural and electronic properties of c-BN(110) surface and surface point defects
Kökten, Hatice (World Scientific Pub Co Pte Lt, 2006-06-01)
The surface structure, surface energy, and surface vacancy formation energy for B and N vacancy of the cubic boron nitride (c-BN)(110) surface have been investigated by performing Hartree-Fock and DFT calculations. Results are compared with available literature values. The vacancy formation energies [unrelaxed (E-f(o)) and relaxed (E-f)] axe reported for the first time for c-BN(110).
An algorithm to generate toroidal and helical cage structures using pentagons, hexagons and heptagons
Yazgan, E; Tasci, E; Erkoc, A (World Scientific Pub Co Pte Lt, 2004-02-01)
An algorithm to generate toroidal or helical cage structures has been developed. Any toroidal or helical structure can be generated following four stages. In the first stage a Fonseca type unit cell and its symmetrical counterpart is formed which represents one-fifth of a toroid. In the second stage one-fifth fragment of the torus is fully obtained by applying geometry optimization to the structure obtained in the first stage. In the third stage the torus fragment obtained in the second stage is reproduced ...
An alternative simple solution of the sextic anharmonic oscillator and perturbed coulomb problems
IKHDAİR, SAMEER; Sever, Ramazan (World Scientific Pub Co Pte Lt, 2007-10-01)
Utilizing an appropriate ansatz to the wave function, we reproduce the exact bound-state solutions of the radial Schrodinger equation to various exactly solvable sextic an-harmonic oscillator and confining perturbed Coulomb models in D-dimensions. We show that the perturbed Coulomb problem with eigenvalue E can be transformed to a sextic anharmonic oscillator problem with eigenvalue P. We also check the explicit relevance of these two related problems in higher-space dimensions. It is shown that exact solut...
Junction formation in crossed nanotubes under pressure: Molecular-dynamics simulations
Tasci, E; Malcıoğlu, Osman Barış; Erkoc, A (World Scientific Pub Co Pte Lt, 2005-09-01)
Junction formation in crossed C(10,0) single wall carbon nanotubes under pressure has been investigated, using classical molecular-dynamics simulations at 1 K. It has been found that a stable mechanical junction was formed by means of placing two crossed single wall carbon nanotubes between two rigid graphene layers which move toward each other.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ş. Erkoç, “Metal atom endohedrally doped C-20 cage structure: (X@C-20; X = Ni, Fe, Co),”
INTERNATIONAL JOURNAL OF MODERN PHYSICS C
, pp. 1553–1560, 2005, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/51816.