Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Investigating the effects of random sieving losses on particle size distributions
Date
2019-09-23
Author
Camalan, Mahmut
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
4
views
0
downloads
Sieving analyses are very susceptible to the unavoidable particle losses. Therefore, it is important to assess how sieving losses will affect the particle size distributions. This study aims to simulate sieving losses under a computing environment to further investigate their effects on the particle size distributions. For the purpose of this study, the cumulative size distributions of different particulate materials were generated by using the Gates-Gaudin-Schuhmann (GGS) and Rosin-Rammler-Bennett (RRB) equations. Then, random sieving losses were generated by taking random mass fractions from randomly-selected size intervals. The sums of these random losses were subtracted from the original masses in the size intervals. The calculated residual masses in the size intervals were used to construct the cumulative size distributions of the residual materials. Results show that increasing the mass of sieving losses will only change the position of wide distributions. However, increasing losses will both change the position and shape of narrow distributions. Tolerating all sources of sieving errors may be better to preserve the distribution shapes. The simulation results suggest the rule-of-thumb limit for sieving losses. Sieving losses cause the GGS plots of the grinding products to deviate to bilinear shapes at finer size ranges.
Subject Keywords
General Chemical Engineering
URI
https://hdl.handle.net/11511/51844
Journal
PARTICULATE SCIENCE AND TECHNOLOGY
DOI
https://doi.org/10.1080/02726351.2019.1669749
Collections
Department of Mining Engineering, Article