Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Investigating the effects of random sieving losses on particle size distributions
Date
2019-09-23
Author
Camalan, Mahmut
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
216
views
0
downloads
Cite This
Sieving analyses are very susceptible to the unavoidable particle losses. Therefore, it is important to assess how sieving losses will affect the particle size distributions. This study aims to simulate sieving losses under a computing environment to further investigate their effects on the particle size distributions. For the purpose of this study, the cumulative size distributions of different particulate materials were generated by using the Gates-Gaudin-Schuhmann (GGS) and Rosin-Rammler-Bennett (RRB) equations. Then, random sieving losses were generated by taking random mass fractions from randomly-selected size intervals. The sums of these random losses were subtracted from the original masses in the size intervals. The calculated residual masses in the size intervals were used to construct the cumulative size distributions of the residual materials. Results show that increasing the mass of sieving losses will only change the position of wide distributions. However, increasing losses will both change the position and shape of narrow distributions. Tolerating all sources of sieving errors may be better to preserve the distribution shapes. The simulation results suggest the rule-of-thumb limit for sieving losses. Sieving losses cause the GGS plots of the grinding products to deviate to bilinear shapes at finer size ranges.
Subject Keywords
General Chemical Engineering
URI
https://hdl.handle.net/11511/51844
Journal
PARTICULATE SCIENCE AND TECHNOLOGY
DOI
https://doi.org/10.1080/02726351.2019.1669749
Collections
Department of Mining Engineering, Article
Suggestions
OpenMETU
Core
The use of non-parametric tests between subsamples and particle population for the assessment of minimum number of particles in microscopic analysis
Camalan, Mahmut (Informa UK Limited, 2020-08-01)
The use of small and reliable samples in a microscopic analysis can decrease the time to estimate the particle size and mineral grade distributions in a population of particles. This paper attempts to assess the minimum reliable sample size for the above-mentioned distributions, by implementing non-parametric tests on the subsamples taken from a specific population of 2800 particles. The Kolmogorov-Smirnov tests show that the subsamples which contain more than 800 particles (29% of the population) cannot gi...
Investigation of the layering mechanism of agglomerate growth during drum pelletization
Sastry, KVS; Dontula, P; Hoşten, Çetin (Elsevier BV, 2003-02-19)
Conventional drum pelletization circuits exhibit undesirable surging behavior that is known to result from uncontrolled occurrence of the mechanisms of nucleation, coalescence and layering. This study was undertaken to investigate the mechanism of pellet growth by layering. Several laboratory experiments were carried out to delineate the effect of feed moisture content and feed quantity. This paper presents an analysis of the experimental results and a simple model to describe the layering process. (C) 2002...
Detecting stability of conical spouted beds based on information entropy theory
Savari, Chiya; Sotudeh-Gharebagh, Rahmat; Külah, Görkem; KÖKSAL, MURAT; Mostoufi, Navid (Elsevier BV, 2019-02-01)
Effects of particle size, particle density, gas inlet diameter and static bed height on the stability of operation in conical spouted beds were investigated through analyses of information entropy of pressure fluctuations. In this respect, the maximum information entropy of pressure fluctuations was used as a stability criterion. The results showed that stability of the bed increases with an increase in the maximum entropy. The maximum information entropy of pressure fluctuations increases with increasing p...
Estimating the number-weighted equivalents of the mass-weighted size distribution functions
Camalan, Mahmut (Elsevier BV, 2020-06-01)
The number-weighted particle size distributions are difficult to be estimated experimentally. This study offers a simple conversion method to convert mass-weighted distributions to their number-weighted equivalents. Besides, the number-weighted equivalents of the Gates-Gaudin-Schuhmann, Gaudin-Meloy, Pareto, and Rosin-Rammler distributions were determined by the conversion method. The accuracy of the method was successfully confirmed on the artificial populations generated from the Gates-Gaudin-Schuhmann, R...
Experimental investagation of drag reduction effects of polymer additives on turbulent pipe flow
Zeybek, Şerife; Uludağ, Yusuf; Department of Chemical Engineering (2005)
Since the discovery of the drag reduction effects of even small amount of macromolecules in solutions in turbulent pipe flows, there have been many experimental and theoretical studies in order to understand mechanisms behind this phenomenon. Theories have been proposed based on the observations on the change in the characteristics of the turbulent flow near the pipe wall where friction of the momentum transfer between the flow and the conduit takes place. In this study drag reduction in fully developed tur...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Camalan, “Investigating the effects of random sieving losses on particle size distributions,”
PARTICULATE SCIENCE AND TECHNOLOGY
, pp. 0–0, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/51844.