Kalkanlı, AK
It is shown that the Gürses-Nutku equations have a finite prolongation algebra for any value of the parameterK. The Painlevé property of these equations is also examined.
International Journal of Theoretical Physics


Dosi, Anar (Rocky Mountain Mathematics Consortium, 2009-01-01)
In this note we prove that if either 21 is a Banach-Jordan algebra or a Banach-Lie algebra then all perturbations of the multiplication in 21 give algebras topologically isomorphic with 21 whenever certain small-dimension cohomology groups associated with 21 are vanishing.
Effective Mass Schrodinger Equation via Point Canonical Transformation
Arda, Altug; Sever, Ramazan (IOP Publishing, 2010-07-01)
Exact solutions of the effective radial Schrodinger equation are obtained for some inverse potentials by using the point canonical transformation. The energy eigenvalues and the corresponding wave functions are calculated by using a set of mass distributions.
Discrete symmetries and nonlocal reductions
GÜRSES, METİN; Pekcan, Asli; Zheltukhın, Kostyantyn (Elsevier BV, 2020-01-31)
We show that nonlocal reductions of systems of integrable nonlinear partial differential equations are the special discrete symmetry transformations.
Centralizers of Finite p-Subgroups in Simple Locally Finite Groups
Kuzucuoğlu, Mahmut (Siberian Federal University, 2017-01-01)
We are interested in the following questions of B. Hartley: (1) Is it true that, in an infinite, simple locally finite group, if the centralizer of a finite subgroup is linear, then G is linear? (2) For a finite subgroup F of a non-linear simple locally finite group is the order vertical bar CG(F)vertical bar infinite? We prove the following: Let G be a non-linear simple locally finite group which has a Kegel sequence K = {(G(i), 1) : i is an element of N} consisting of finite simple subgroups. Let p be a f...
Exact solution of the Klein-Gordon equation for the PT-symmetric generalized Woods-Saxon potential by the Nikiforov-Uvarov method
Ikhdair, Sameer M.; Sever, Ramazan (Wiley, 2007-03-01)
The exact solution of the one-dimensional Klein-Gordon equation of the PT-symmetric generalized Woods-Saxon potential is obtained. The exact energy eigenvalues and wavefunctions are derived analytically by using the Nikiforov and Uvarov method. In addition, the positive and negative exact bound states of the s-states are also investigated for different types of complex generalized Woods-Saxon potentials. (C) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Citation Formats
A. Kalkanlı, “PROLONGATION STRUCTURE AND PAINLEVE PROPERTY OF THE GURSES-NUTKU EQUATIONS,” International Journal of Theoretical Physics, pp. 1085–1092, 1987, Accessed: 00, 2020. [Online]. Available: