Hamilton-Jacobi theory of discrete, regular constrained systems

Güler, Y.
The Hamilton-Jacobi differential equation of a discrete system with constraint equationsG α=0 is constructed making use of Carathéodory’s equivalent Lagrangian method. Introduction of Lagrange’s multipliersλ˙α as generalized velocities enables us to treat the constraint functionsG α as the generalized momenta conjugate toλ˙α. Canonical equations of motion are determined.
Il Nuovo Cimento B Series 11


DERELI, T; ERIS, A; ERIS, A; Karasu, Atalay (1986-05-01)
Magnetostatic, axially symmetric 5-dimensional vacuum Einstein equations are formulated in terms of harmonic maps. A correspondence between stationary, axially symmetric 4-dimensional vacuum Einstein solutions and the magnetostatic, axially symmetric Jordan-Thiry solutions is established. The «Kaluza-Klein magnetic monopole» solution is recovered in a special case.
Hamilton-Jacobi theory of continuous systems
Güler, Y. (Springer Science and Business Media LLC, 1987-8)
The Hamilton-Jacobi partial differnetial equation for classical field systems is obtained in a 5n-dimensional phase space and it is integrated by the method of characteristics. Space-time partial derivatives of Hamilton’s principal functionsS μ (Φ i ,x ν ) (μ,ν=1,2,3,4) are identified as the energy-momentum tensor of the system.
Stability analysis of constraints in flexible multibody systems dynamics
İder, Sıtkı Kemal (Elsevier BV, 1990-1)
Automated algorithms for the dynamic analysis and simulation of constrained multibody systems assume that the constraint equations are linearly independent. During the motion, when the system is at a singular configuration, the constraint Jacobian matrix possesses less than full rank and hence it results in singularities. This occurs when the direction of a constraint coincides with the direction of the lost degree of freedom. In this paper the constraint equations for deformable bodies are modified for use...
Numerical studies of the electronic properties of low dimensional semiconductor heterostructures
Dikmen, Bora; Tomak, Mehmet; Department of Physics (2004)
An efficient numerical method for solving Schrödinger's and Poisson's equations using a basis set of cubic B-splines is investigated. The method is applied to find both the wave functions and the corresponding eigenenergies of low-dimensional semiconductor structures. The computational efficiency of the method is explicitly shown by the multiresolution analysis, non-uniform grid construction and imposed boundary conditions by applying it to well-known single electron potentials. The method compares well wit...
Integrable boundary value problems for elliptic type Toda lattice in a disk
Guerses, Metin; Habibullin, Ismagil; Zheltukhın, Kostyantyn (AIP Publishing, 2007-10-01)
The concept of integrable boundary value problems for soliton equations on R and R+ is extended to regions enclosed by smooth curves. Classes of integrable boundary conditions in a disk for the Toda lattice and its reductions are found. (C) 2007 American Institute of Physics.
Citation Formats
Y. Güler, “Hamilton-Jacobi theory of discrete, regular constrained systems,” Il Nuovo Cimento B Series 11, pp. 267–276, 1987, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/52017.