Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A multiple recursive non-linear congruential pseudo random number generator
Date
1987-9
Author
Eichenauer, Johanna
Grothe, Heather L.
Lehn, Juergen
Topuzoglu, Alev
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
215
views
0
downloads
Cite This
On-linear multiple recursive congruential pseudo random number generator with prime modulus p is introduced. Let x, n≥0, be the sequence generated by a usual linear (r+1)-step recursive congruential generator with prime modulus p and denote by N(n), n≥0, the sequence of non-negative integers with xN(n)≢0 (mod p). The non-linear generator is defined by zn≡xN(n)+1·x −1N(n) (mod p), n≥0, where x −1N(n) denotes the inverse element of xN(n) in the Galois field GF(p). A condition is given which ensures that the generated sequence is purely periodic with period length pr and all (p−1)r r-tupels (y1,...,yr) with 1≤y1,...,yr≤p are generated once per period when r-tupels of consecutive numbers of the generated sequence are formed. For r=1 this generator coincides with the generator introduced by Eichenauer and Lehn [2].
Subject Keywords
General Mathematics
,
Number theory
,
Algebraic geometry
,
Topological group
,
Period length
,
Pseudo random number
URI
https://hdl.handle.net/11511/52239
Journal
Manuscripta Mathematica
DOI
https://doi.org/10.1007/bf01174798
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
A NONLINEAR CONGRUENTIAL PSEUDORANDOM NUMBER GENERATOR WITH POWER OF 2 MODULUS
EICHENAUER, J; LEHN, J; TOPUZOGLU, A (1988-10-01)
A nonlinear congruential pseudorandom number generator is studied where the modulus is a power of two. Investigation of this generator was suggested by Knuth [7]. A simple necessary and sufficient condition is given for this generator to have the maximal period length.
The Schur algorithm and reproducing kernel Hilbert spaces in the ball
Alpay, D; Bolotnikov, V; Kaptanoglu, HT (Elsevier BV, 2002-02-15)
Using reproducing kernel Hilbert spaces methods we develop a Schur-type algorithm for a subclass of the functions analytic and contractive in the ball. We also consider the Nevanlinna-Pick interpolation problem in that class. (C) 2002 Elsevier Science Inc. All rights reserved.
The class of (1,3)-groups with homocyclic regulator quotient of exponent p(4) has bounded representation type
Arnold, David M.; Mader, Adolf; Mutzbauer, Otto; Solak, Ebru (Elsevier BV, 2014-02-15)
The class of almost completely decomposable groups with a critical typeset of type (1,3) and a homocyclic regulator quotient of exponent p(4) is shown to be of bounded representation type. There are only nine near-isomorphism types of indecomposables, all of rank <= 6.
A generic identification theorem for L*-groups of finite Morley rank
Berkman, Ayse; Borovik, Alexandre V.; Burdges, Jeffrey; Cherfin, Gregory (Elsevier BV, 2008-01-01)
This paper provides a method for identifying "sufficiently rich" simple groups of finite Morley rank with simple algebraic groups over algebraically closed fields. Special attention is given to the even type case, and the paper contains a number of structural results about simple groups of finite Morley rank and even type.
The classical involution theorem for groups of finite Morley rank
Berkman, A (Elsevier BV, 2001-09-15)
This paper gives a partial answer to the Cherlin-Zil'ber Conjecture, which states that every infinite simple group of finite Morley rank is isomorphic to an algebraic group over an algebraically closed field. The classification of the generic case of tame groups of odd type follows from the main result of this work, which is an analogue of Aschbacher's Classical Involution Theorem for finite simple groups. (C) 2001 Academic Press.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
J. Eichenauer, H. L. Grothe, J. Lehn, and A. Topuzoglu, “A multiple recursive non-linear congruential pseudo random number generator,”
Manuscripta Mathematica
, pp. 331–346, 1987, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/52239.