Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Estimating parameters in autoregressive models in non-normal situations: Asymmetric innovations
Date
2001-01-01
Author
Akkaya, Ayşen
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
183
views
0
downloads
Cite This
The estimation of coefficients in a simple autoregressive model is considered in a supposedly difficult situation where the innovations have an asymmetric distribution. Two distributions, gamma and generalized logistic, are considered for illustration. Closed form estimators are obtained and shown to be efficient and robust. Efficiencies of least squares estimators are evaluated and shown to be very low. This work is an extension of that of Tiku, Wong and Bian [1] who give solutions for a simple AR(I) model
Subject Keywords
Autoregression
,
Skewness
,
Maximum likelihood
,
Modified maximum likelihood
,
Least squares
,
Robustness
,
Chisquare
,
Generalized logistic
,
Autocorrelation
URI
https://hdl.handle.net/11511/52274
Journal
Communications in Statistics - Theory and Methods
DOI
https://doi.org/10.1081/sta-100002095
Collections
Department of Statistics, Article
Suggestions
OpenMETU
Core
Nonnormal regression. I. Skew distributions
İslam, Muhammed Qamarul; Yildirim, F (2001-01-01)
In a linear regression model of the type y = thetaX + e, it is often assumed that the random error e is normally distributed. In numerous situations, e.g., when y measures life times or reaction times, e typically has a skew distribution. We consider two important families of skew distributions, (a) Weibull with support IR: (0, infinity) on the real line, and (b) generalised logistic with support IR: (-infinity, infinity). Since the maximum likelihood estimators are intractable in these situations, we deriv...
Robust estimation in multiple linear regression model with non-Gaussian noise
Akkaya, Ayşen (2008-02-01)
The traditional least squares estimators used in multiple linear regression model are very sensitive to design anomalies. To rectify the situation we propose a reparametrization of the model. We derive modified maximum likelihood estimators and show that they are robust and considerably more efficient than the least squares estimators besides being insensitive to moderate design anomalies.
Non-normal bivariate distributions: estimation and hypothesis testing
Qunsiyeh, Sahar Botros; Tiku, Moti Lal; Department of Statistics (2007)
When using data for estimating the parameters in a bivariate distribution, the tradition is to assume that data comes from a bivariate normal distribution. If the distribution is not bivariate normal, which often is the case, the maximum likelihood (ML) estimators are intractable and the least square (LS) estimators are inefficient. Here, we consider two independent sets of bivariate data which come from non-normal populations. We consider two distinctive distributions: the marginal and the conditional dist...
Applications of estimation techniques on genetic and other types of data
Aslan, Murat; Akkaya, Ayşen; Department of Statistics (2003)
The parameters of genetic and other types of data, particularly with small samples, are estimated by using method of moments, least squares, minimum chi- square, maximum likelihood and modified maximum likelihood estimation methods. These methods are also compared in terms of their efficiencies and robustness property.
Analysis of variance in experimental design with nonnormal error distributions
Senoglu, B; Tiku, ML (2001-01-01)
We consider a two-way classification model with interaction and assume that the errors have a location-scale nonnormal distribution. From an application of the modified likelihood estimation, we obtain efficient and robust estimators of the parameters. We define F statistics for testing main effects and interaction. We analyze the Box-Cox data and show that the method developed in this paper gives accurate results besides being easy theoretically and computationally.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Akkaya, “Estimating parameters in autoregressive models in non-normal situations: Asymmetric innovations,”
Communications in Statistics - Theory and Methods
, pp. 517–536, 2001, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/52274.