Structural and electronic properties of bamboo-like carbon nanostructure

2006-01-01
Erkoç, Şakir
The structural and electronic properties of bamboo-like carbon nanostructure have been investigated qualitatively by performing semi-empirical self-consistent-field molecular orbital calculations at the level of the PM3 method within the RHF formulation. It has been found that these structures are stable and endothermic. Bamboo-like carbon nanostructures resemble zigzag carbon nanotubes capped with a plane graphine sheet.
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES

Suggestions

Structural and electronic properties of single-wall ZnO nanotubes
Erkoç, Şakir; Kokten, H (Elsevier BV, 2005-07-01)
The structural and electronic properties of armchair and zigzag models of single-wall ZnO nanotubes have been investigated by performing semiempirical molecular orbital self-consistent field calculations at the level of AM1 method within the RHF formulation. It has been found that these structures are stable and endothermic. The armchair model has zero net dipole moment, whereas the zigzag model has nonzero net dipole moment. The interfrontier molecular energy gap of these systems are different; the gap of ...
Structural and electronic properties of lithium endohedral doped carbon nanocapsules
Pekoz, Rengin; Erkoç, Şakir (Elsevier BV, 2007-02-01)
Endohedral lithium and lithium ion doped carbon nanocapsule (CNC) systems have been theoretically investigated by performing semi-empirical molecular orbital method at the level of PM3 (UHF and/or RHF) type quantum chemical treatment in order to explore the energetics and electronic structures. The geometries of the studied systems have been optimized and the molecular properties, energies, some selected molecular orbital eigenvalues and dipole moments of the studied capsules are reported. Molecular dynamic...
Structural and molecular electronic properties of B-N ring doped single-wall carbon nanotubes
Malcıoğlu, Osman Barış; Erkoc, A (Elsevier BV, 2005-08-01)
Various molecular electronic properties of boron-nitride nanotube ring doped four different single-wall carbon nanotubes are investigated theoretically by performing self-consistent-field molecular-orbital semi-empirical and density functional theory calculations. Results are compared with corresponding carbon nanotubes. It is seen that polar nature of the boron-nitride nanotube ring lead to a spontaneous polarization, an electrostatic potential barrier occurs in metallic carbon nanotube models, and these m...
Does tubular structure of carbon form only from graphine sheet?
Erkoç, Şakir (Elsevier BV, 2004-10-01)
The structural and electronic properties of carbon nanotubes constructed from non-graphine sheet have been investigated qualitatively by performing semi-empirical self-consistent-field molecular orbital calculations at the level of AMI method within the RHF formulation. It has been found that these structures are stable and endothermic. From the point of view of electronic properties these structures seem to be nonconductive; their frontier molecular orbital energy differences are large, in the order of 10e...
Energetics and structural properties of carbon and oxygen doped hexagonal boron nitride sheets
Kökten, Hatice (Elsevier BV, 2011-10-01)
Energetics and structural properties of carbon and oxygen doped hexagonal boron nitride sheets have been investigated by performing density functional theory calculations. Substitutional doping model has been considered in the neutral charge state. C and O atoms replaced either B or N site in the system as impurities. A systematic study has been performed to see the effect of cell size on the calculated quantities, such as formation energy, relaxation energy, charge and bond length. It has been found that s...
Citation Formats
Ş. Erkoç, “Structural and electronic properties of bamboo-like carbon nanostructure,” PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, pp. 62–66, 2006, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/52457.