Online state estimation for discrete nonlinear dynamic systems with nonlinear noise and interference

2015-01-01
Demirbaş, Kerim
This paper presents a real-time recursive state filtering and prediction scheme (PR) for discrete nonlinear dynamic systems with nonlinear noise and random interference, such as undesired random jamming or clutter. The PR is based upon discrete noise approximation, state quantization, and a suboptimal implementation of multiple composite hypothesis testing. The PR outperforms both the sampling importance resampling (SIR) particle filter and auxiliary sampling importance resampling (ASIR) particle filter; whereas Kalman-based nonlinear filters are, in general, inadequate for state estimation of many nonlinear dynamic systems with nonlinear noise and interference. Moreover, the PR is more general than grid-based estimation approaches. It is also very suitable for state estimation with either constraints imposed on state estimates or missing observations. (C) 2014 The Franklin Institute. Published by Elsevier Ltd. All rights reserved
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS

Suggestions

Bobrovsky-Zakai Bound for Filtering, Prediction and Smoothing of Nonlinear Dynamic Systems
Fritsche, Carsten; Orguner, Umut; Gustafsson, Fredrik (2018-07-13)
In this paper, recursive Bobrovsky-Zakai bounds for filtering, prediction and smoothing of nonlinear dynamic systems are presented. The similarities and differences to an existing Bobrovsky-Zakai bound in the literature for the filtering case are highlighted. The tightness of the derived bounds are illustrated on a simple example where a linear system with non-Gaussian measurement likelihood is considered. The proposed bounds are also compared with the performance of some well-known filters/predictors/smoot...
A new real-time suboptimum filtering and prediction scheme for general nonlinear discrete dynamic systems with Gaussian or non-Gaussian noise
Demirbaş, Kerim (Informa UK Limited, 2011-01-01)
A new suboptimum state filtering and prediction scheme is proposed for nonlinear discrete dynamic systems with Gaussian or non-Gaussian disturbance and observation noises. This scheme is an online estimation scheme for real-time applications. Furthermore, this scheme is very suitable for state estimation under either constraints imposed on estimates or missing observations. State and observation models can be any nonlinear functions of the states, disturbance and observation noises as long as noise samples ...
Residual based Adaptive Unscented Kalman filter for satellite attitude estimation
Söken, Halil Ersin (2012-12-01)
Determining the process noise covariance matrix in Kalman filtering applications is a difficult task especially for estimation problems of the high-dimensional states where states like biases or system parameters are included. This study introduces a simplistic residual based adaptation method for the Unscented Kalman Filter (UKF), which is used for small satellite attitude estimation. For a satellite with gyros and magnetometers onboard, the proposed adaptive UKF algorithm estimates the attitude as well as...
Stochastic modeling of biochemical systems with filtering and smoothing
Haksever, Merve; Uğur, Ömür; Department of Scientific Computing (2019)
Deterministic modeling approach is the traditional way of analyzing the dynamical behavior of a reaction network. However, this approach ignores the discrete and stochastic nature of biochemical processes. In this study, modeling approaches, stochastic simulation algorithms and their relationships to each other are investigated. Then, stochastic and deterministic modeling approaches are applied to biological systems, Lotka-Volterra prey-predator model, Michaelis-Menten enzyme kinetics and JACK-STAT signalin...
Multi-objective decision making using fuzzy discrete event systems: A mobile robot example
Boutalis, Yiannis; Schmidt, Klaus Verner (2010-09-29)
In this paper, we propose an approach for the multi-objective control of sampled data systems that can be modeled as fuzzy discrete event systems (FDES). In our work, the choice of a fuzzy system representation is justified by the assumption of a controller realization that depends on various potentially imprecise sensor measurements. Our approach consists of three basic steps that are performed in each sampling instant. First, the current fuzzy state of the system is determined by a sensor evaluation. Seco...
Citation Formats
K. Demirbaş, “Online state estimation for discrete nonlinear dynamic systems with nonlinear noise and interference,” JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, pp. 216–235, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/52491.