Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Exploiting Class-Specific Features in Multi-feature Dissimilarity Space for Efficient Querying of Images
Date
2011-10-28
Author
Yilmaz, Turgay
Yazıcı, Adnan
Yildirim, Yakup
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
0
views
0
downloads
Combining multiple features is an empirically validated approach in the literature, which increases the accuracy in querying. However, it entails processing intrinsic high-dimensionality of features and complicates realizing an efficient system. Two primary problems can be discussed for efficient querying: representation of images and selection of features. In this paper, a class-specific feature selection approach with a dissimilarity based representation method is proposed. The class-specific features are determined by using the representativeness and discriminativeness of features for each image class. The calculations are based on the statistics on the dissimilarity values of training images.
Subject Keywords
INFORMATION FUSION
,
CLASSIFIERS
URI
https://hdl.handle.net/11511/52570
Collections
Department of Computer Engineering, Conference / Seminar