Questioning Degree of Accuracy Offered by the Spectral Element Method in Computational Electromagnetics

2015-07-01
Mahariq, I.
KURT, HAMZA
Kuzuoğlu, Mustafa
In this paper, a comparison amongst the spectral element method (SEM), the finite difference method (FDM), and the first-order finite element method (FEM) is presented. For the sake of consistency, the comparison is carried out on one-dimensional and two-dimensional boundary value problems based on the same measure of error in order to emphasize on the high accuracy gained by the SEM. Then, the deterioration in the accuracy of the SEM due to the elemental deformation is demonstrated. Following this, we try to answer the question: Do we need the high accuracy offered by the SEM in computational electromagnetics? The answer is supported by solving a typical, unbounded electromagnetic scattering problem in the frequency domain by the SEM. Domain truncation is performed by the well-known perfectly matched layer (PML).
APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL

Suggestions

Analysis of RC walls with a mixed formulation frame finite element
Sarıtaş, Afşin (2013-10-01)
This paper presents a mixed formulation frame element with the assumptions of the Timoshenko shear beam theory for displacement field and that accounts for interaction between shear and normal stress at material level. Nonlinear response of the element is obtained by integration of section response, which in turn is obtained by integration of material response. Satisfaction of transverse equilibrium equations at section includes the interaction between concrete and transverse reinforcing steel. A 3d plastic...
Multiscale Modeling of Thin-Wire Coupling Problems Using Hybridization of Finite Element and Dipole Moment Methods and GPU Acceleration
ÖZGÜN, ÖZLEM; Mittra, Raj; Kuzuoğlu, Mustafa (2020-01-01)
In this article, a hybrid numerical method, called finite element method (FEM) + dipole moment (DM), is presented for efficient solution of multiscale electromagnetic radiation and scattering problems that involve structures with fine features, such as thin-wire antennas or objects. In this method, the FEM is hybridized with the DM approach to help ease certain computational burdens, such as mesh refinement, ill-conditioning, memory overload, and long computation times, when solving multiscale problems with...
On the Attenuation of the Perfectly Matched Layer in Electromagnetic Scattering Problems with the Spectral Element Method
Mahariq, I.; Kuzuoğlu, Mustafa; Tarman, Işık Hakan (2014-09-01)
Although Spectral Element Method (SEM) has been applied in the modeling of boundary value problems of electromagnetics, its usage is not as common as the Finite Element or Finite Difference approaches in this area. It is well-known that the Perfectly Matched Layer (PML) approach is a mesh/grid truncation method in scattering or radiation applications where the spatial domain is unbounded. In this paper, the PML approach in the SEM context is investigated in two-dimensional, frequency-domain scattering probl...
Implementation of coordinate transformations in periodic finite-element method for modeling rough surface scattering problems
ÖZGÜN, ÖZLEM; Kuzuoğlu, Mustafa (2016-05-01)
The coordinate transformation technique (with its current name of transformation electromagnetics) is applied to the finite-element method (FEM) with periodic boundary conditions for efficient Monte Carlo simulation of one-dimensional random rough surface scattering problems. In a unit cell of periodic structure, two coordinate transformations are used, one of which is a real transformation designed to model the rough surface with flat surface, and the other is a complex transformation used to design a perf...
Least-squares finite element solution of Euler equations with H-type mesh refinement and coarsening on triangular elements
AKARGUN, Hayri Yigit; Sert, Cüneyt (2014-01-01)
Purpose - The purpose of this paper is to demonstrate successful use of least-squares finite element method (LSFEM) with h-type mesh refinement and coarsening for the solution of two-dimensional, inviscid, compressible flows.
Citation Formats
I. Mahariq, H. KURT, and M. Kuzuoğlu, “Questioning Degree of Accuracy Offered by the Spectral Element Method in Computational Electromagnetics,” APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, pp. 698–705, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/52782.