Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Template based control of hexapedal running
Date
2003-09-19
Author
Saranlı, Uluç
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
123
views
0
downloads
Cite This
In this paper, we introduce a hexapedal locomotion controller that simulation evidence suggests will be capable of driving our RHex robot at speeds exceeding five body lengths per second with reliable stability and rapid maneuverability. We use a low dimensional passively compliant biped as a "template"-a control target for the alternating tripod gait of the physical machine. We impose upon the physical machine an approximate inverse dynamics within-stride controller designed to force the true high dimensional system dynamics down onto the lower dimensional subspace corresponding to the template. Numerical simulations suggest the presence of asymptotically stable running gaits with large basins of attraction. Moreover, this controller improves substantially the maneuverability and dynamic range of RHex's running behaviors relative to the initial prototype open-loop algorithms.
Subject Keywords
LOCOMOTION
,
WALKING
URI
https://hdl.handle.net/11511/53116
Conference Name
20th IEEE International Conference on Robotics and Automation (ICRA)
Collections
Department of Computer Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Flexible multibody dynamic modeling and simulation of rhex hexapod robot with half circular compliant legs
Oral, Gökhan; Yazıcıoğlu, Yiğit; Department of Mechanical Engineering (2008)
The focus of interest in this study is the RHex robot, which is a hexapod robot that is capable of locomotion over rugged, fractured terrain through statically and dynamically stable gaits while stability of locomotion is preserved. RHex is primarily a research platform that is based on over five years of previous research. The purpose of the study is to build a virtual prototype of RHex robot in order to simulate different behavior without manufacturing expensive prototypes. The virtual prototype is modele...
An Approximate Stance Map of The Spring Mass Hopper with Gravity Correction For Nonsymmetric Locomotions
Arslan, Omuer; Saranlı, Uluç; Morgul, Omer (2009-05-17)
The Spring-Loaded Inverted Pendulum (SLIP) model has long been established as an effective and accurate descriptive model for running animals of widely differing sizes and morphologies, while also serving as a basis for several hopping robot designs. Further research on this model led to the discovery of several analytic approximations to its normally nonintegrable dynamics. However, these approximations mostly focus on steady-state running with symmetric trajectories due to their linearization of gravitati...
Prediction of slip in cable-drum systems using structured neural networks
KILIÇ, Ergin; Dölen, Melik (SAGE Publications, 2014-02-01)
This study focuses on the slip prediction in a cable-drum system using artificial neural networks for the prospect of developing linear motion sensing scheme for such mechanisms. Both feed-forward and recurrent-type artificial neural network architectures are considered to capture the slip dynamics of cable-drum mechanisms. In the article, the network development is presented in a progressive (step-by-step) fashion for the purpose of not only making the design process transparent to the readers but also hig...
Computation of drag force on single and close-following vehicles
Örselli, Erdem; Çetinkaya, Tahsin Ali; Department of Mechanical Engineering (2006)
In this study, application of computational fluid dynamics to ground vehicle aerodynamics was investigated. Two types of vehicle models namely, Ahmed Body and MIRA Notchback Body and their scaled models were used. A commercial software "Fluent" was used and the effects of implementing different turbulence models with wall functions were observed. As a result, an appropriate turbulence model was selected to use in the study. The drag forces, surface pressure distributions and wake formations were investigate...
Experimental investigation of the effects of tip-injection on the aerodynamic loads and wake characteristics of a model horizontal axis wind turbine rotor
Abdulrahim, Anas; Uzol, Oğuz; Department of Aerospace Engineering (2014)
In this study, tip injection is implemented on a model Horizontal Axis Wind Turbine (HAWT) rotor to investigate the power and thrust coefficient variations as well as the wake characteristics. The model wind turbine has a 0.95 m diameter 3-bladed rotor with non-linearly twisted and tapered blades that has NREL S826 profile. The nacelle, hub and the blades are specifically designed to allow pressurized air to pass through and get injected from the tips while the rotor is rotating. The experiments are perform...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
U. Saranlı, “Template based control of hexapedal running,” presented at the 20th IEEE International Conference on Robotics and Automation (ICRA), TAIPEI, TAIWAN, 2003, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/53116.