Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Local Anomaly Detection in Crowded Scenes Using Finite-Time Lyapunov Exponent Based Clustering
Date
2014-08-29
Author
Öngün, Cihan
Temizel, Alptekin
Taşkaya Temizel, Tuğba
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
159
views
0
downloads
Cite This
Surveillance of crowded public spaces and detection of anomalies from the video is important for public safety and security. While anomaly detection is possible by detection and tracking of individuals in low-density areas, such methods are not reliable in high-density crowded scenes. In this work we propose a holistic unsupervised approach to cluster different behaviors in high density crowds and detect the local anomalies using these clusters. Finite-Time Lyapunov Exponents (FTLE) is used for analyzing the crowd flow and this flow data is clustered by agglomerative hierarchical clustering. To detect if there is any anomaly in the video, mean of maximum values for pixels in each cluster is used and skewness value of the clusters are calculated. An adaptive threshold is calculated using equal width thresholding which is subsequently used to determine abnormal clusters which are not coherent with the general flow. The method does not require any user defined thresholds or preset rules. Publicly available datasets and our own dataset (which is also made publicly available) are used for testing and demonstrating the effectiveness of the proposed method.
Subject Keywords
Image motion analysis
,
Computer vision
,
Educational institutions
,
Feature extraction
,
Trajectory
,
Clustering algorithms
,
Flowcharts
URI
https://hdl.handle.net/11511/53206
Conference Name
11th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)
Collections
Graduate School of Informatics, Conference / Seminar
Suggestions
OpenMETU
Core
Automated crowd behavior analysis for video surveillance applications
Güler, Püren; Temizel, Alptekin; Taşkaya Temizel, Tuğba; Department of Information Systems (2012)
Automated analysis of a crowd behavior using surveillance videos is an important issue for public security, as it allows detection of dangerous crowds and where they are headed. Computer vision based crowd analysis algorithms can be divided into three groups; people counting, people tracking and crowd behavior analysis. In this thesis, the behavior understanding will be used for crowd behavior analysis. In the literature, there are two types of approaches for behavior understanding problem: analyzing behavi...
Anomaly detection using sparse features and spatio-temporal hidden markov model for pedestrian zone video surveillance
Gündüz, Ayşe Elvan; Taşkaya Temizel, Tuğba; Temizel, Alptekin; Department of Information Systems (2014)
Automated analysis of crowd behavior for anomaly detection has become an important issue to ensure the safety and security of the public spaces. Public spaces have varying people density and as such, algorithms are required to work robustly in low to high density crowds. Mainly, there are two different approaches for analyzing the crowd behavior: methods based on object tracking where individuals in a crowd are tracked and holistic methods where the crowd is analyzed as a whole. In this work, the aim is to ...
An unsupervised method for anomaly detection from crowd videos
Guler, Puren; Temizel, Alptekin; Temizel, Tugba Taskaya (2013-01-01)
Anomaly detection from crowd videos is an issue that is becoming more important due to the difficulties in maintaining the public security in crowded places. Surveillance videos has a significant role for enabling the real time analysis of the captured events occurring in crowded places. This paper presents a method that detects anomalies in crowd in real-time using computer vision and machine learning techniques. The proposed method consists of extracting the crowd behavior properties (velocity, direction)...
Pedestrian zone anomaly detection by non-parametric temporal modelling
Gündüz, Ayşe Elvan; Taşkaya Temizel, Tuğba; Temizel, Alptekin (2014-08-29)
With the increasing focus on safety and security in public areas, anomaly detection in video surveillance systems has become increasingly more important. In this paper, we describe a method that models the temporal behavior and detects behavioral anomalies in the scene using probabilistic graphical models. The Coupled Hidden Markov Model (CHMM) method that we use shows that sparse features obtained via feature detection and description algorithms are suitable for modeling the temporal behavior patterns and ...
Surveillance wireless sensor networks: Deployment quality analysis
Onur, Ertan; Delic, Hakan; Akarun, Lale (2007-11-01)
Surveillance wireless sensor networks are deployed at perimeter or border locations to detect unauthorized intrusions. For deterministic deployment of sensors, the quality of deployment can be determined sufficiently by analysis in advance of deployment. However, when random deployment is required, determining the deployment quality becomes challenging. To assess the quality of sensor deployment, appropriate measures can be employed that reveal the weaknesses in the coverage of SWSNs with respect to the suc...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
C. Öngün, A. Temizel, and T. Taşkaya Temizel, “Local Anomaly Detection in Crowded Scenes Using Finite-Time Lyapunov Exponent Based Clustering,” presented at the 11th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Korea Univ, Seoul, SOUTH KOREA, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/53206.