Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Algorithms for within-cluster searches using inverted files
Date
2006-01-01
Author
Altıngövde, İsmail Sengör
Ulusoy, Ozgur
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
147
views
0
downloads
Cite This
Information retrieval over clustered document collections has two successive stages: first identifying the best-clusters and then the best-documents in these clusters that are most similar to the user query. In this paper, we assume that an inverted file over the entire document collection is used for the latter stage. We propose and evaluate algorithms for within-cluster searches, i.e., to integrate the best-clusters with the best-documents to obtain the final output including the highest ranked documents only from the best-clusters. Our experiments on a TREC collection including 210,158 documents with several query sets show that an appropriately selected integration algorithm based on the query length and system resources can significantly improve the query evaluation efficiency.
Subject Keywords
Retrieval
,
Efficiency
URI
https://hdl.handle.net/11511/53366
Conference Name
21st International Symposium on Computer and Information Sciences (ISCIS 2006)
Collections
Department of Computer Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Improving the performance of Hadoop/Hive by sharing scan and computation tasks
Özal, Serkan; Toroslu, İsmail Hakkı; Doğaç, Asuman; Department of Computer Engineering (2013)
MapReduce is a popular model of executing time-consuming analytical queries as a batch of tasks on large scale data. During simultaneous execution of multiple queries, many oppor- tunities can arise for sharing scan and/or computation tasks. Executing common tasks only once can reduce the total execution time of all queries remarkably. Therefore, we propose to use Multiple Query Optimization (MQO) techniques to improve the overall performance of Hadoop Hive, an open source SQL-based distributed warehouse sy...
Flexible Content Extraction and Querying for Videos
Demir, Utku; KOYUNCU, Murat; Yazıcı, Adnan; Yilmaz, Turgay; SERT, MUSTAFA (2011-10-28)
In this study, a multimedia database system which includes a semantic content extractor, a high-dimensional index structure and an intelligent fuzzy object-oriented database component is proposed. The proposed system is realized by following a component-oriented approach. It supports different flexible query capabilities for the requirements of video users, which is the main focus of this paper. The query performance of the system (including automatic semantic content extraction) is tested and analyzed in t...
Efficient computation of strong partial transitive-closures
Toroslu, İsmail Hakkı (null; 1993-01-01)
The development of efficient algorithms to process the different forms of the transitive-closure (TC) queries within the context of large database systems has recently attracted a large volume of research efforts. In this paper, we present a new algorithm suitable for processing one of these forms, the so called strong partially-instantiated, in which one of the query's argument is instantiated to a set of constants and the processing of which yields a set of tuples that draw their values form both of the q...
A Theoretical Analysis of Multi-Modal Representation Learning with Regular Functions
Vural, Elif (2021-01-07)
Multi-modal data analysis methods often learn representations that align different modalities in a new common domain, while preserving the within-class compactness and within-modality geometry and enhancing the between-class separation. In this study, we present a theoretical performance analysis for multi-modal representation learning methods. We consider a quite general family of algorithms learning a nonlinear embedding of the data space into a new space via regular functions. We derive sufficient condit...
Improving the scalability of ILP-based multi-relational concept discovery system through parallelization
Mutlu, Ayşe Ceyda; Karagöz, Pınar; Kavurucu, Yusuf (2012-03-01)
Due to the increase in the amount of relational data that is being collected and the limitations of propositional problem definition in relational domains, multi-relational data mining has arisen to be able to extract patterns from relational data. In order to cope with intractably large search space and still to be able to generate high-quality patterns. ILP-based multi-relational data mining and concept discovery systems employ several search strategies and pattern limitations. Another direction to cope w...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
İ. S. Altıngövde and O. Ulusoy, “Algorithms for within-cluster searches using inverted files,” Istanbul, TURKEY, 2006, vol. 4263, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/53366.