Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Structural features and energetics of Znn-mCdm (n=7,8) microclusters and Zn-50, Cd-50, and Zn25Cd25 nanoparticles: Molecular-dynamics simulations
Date
2003-10-01
Author
Amirouche, L
Erkoç, Şakir
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
166
views
0
downloads
Cite This
The structural features and energetics of Znn−mCdm (n=7,8) microclusters and Zn50, Cd50, and Zn25Cd25 nanoparticles have been investigated by performing molecular-dynamics computer simulations using a recently developed empirical many-body potential-energy function. The most stable structures were found to be compact and three-dimensional for all elemental and mixed clusters. An interesting structural feature of the mixed clusters is that Zn and Cd atoms do not mix in mixed clusters; they come together almost without mixing.
Subject Keywords
Atomic and Molecular Physics, and Optics
URI
https://hdl.handle.net/11511/53396
Journal
PHYSICAL REVIEW A
DOI
https://doi.org/10.1103/physreva.68.043203
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
STRUCTURAL STABILITY AND ENERGETICS OF C, SI, AND GE MICROCLUSTERS - EMPIRICAL MANY-BODY POTENTIAL-ENERGY FUNCTION CALCULATION
Erkoç, Şakir (Springer Science and Business Media LLC, 1991-01-01)
The structural stability and energetics of carbon, silicon, and germanium microclusters containing 3-7 atoms have been investigated by using a recently developed empirical many-body potential energy function (PEF), which comprises two- and three-body atomic interactions. The PEF satisfies both bulk cohesive energy per atom and bulk stability exactly. It has been found that the most stable C3-4 microclusters are linear with D-infinity-h symmetry but C5-7 microclusters are planar with D(nh) symmetry. Silic...
Structural and electronic properties of single-wall ZnO nanotubes
Erkoç, Şakir; Kokten, H (Elsevier BV, 2005-07-01)
The structural and electronic properties of armchair and zigzag models of single-wall ZnO nanotubes have been investigated by performing semiempirical molecular orbital self-consistent field calculations at the level of AM1 method within the RHF formulation. It has been found that these structures are stable and endothermic. The armchair model has zero net dipole moment, whereas the zigzag model has nonzero net dipole moment. The interfrontier molecular energy gap of these systems are different; the gap of ...
Geometric measures of entanglement
UYANIK, KIVANÇ; Turgut, Sadi (American Physical Society (APS), 2010-03-01)
The geometric measure of entanglement, which expresses the minimum distance to product states, has been generalized to distances to sets that remain invariant under the stochastic reducibility relation. For each such set, an associated entanglement monotone can be defined. The explicit analytical forms of these measures are obtained for bipartite entangled states. Moreover, the three-qubit case is discussed and it is argued that the distance to the W states is a new monotone.
Ground-state properties, vortices, and collective excitations in a two-dimensional Bose-Einstein condensate with gravitylike interatornic attraction
Keleş, Ahmet; Tanatar, B. (American Physical Society (APS), 2008-05-01)
We study the ground-state properties of a Bose-Einstein condensate with short-range repulsion and gravitylike 1 /r interatomic attraction in two-dimensions (2D). Using the variational approach we obtain the ground-state energy and analyze the stability of the condensate for a range of interaction strengths in 2D. We also determine the collective excitations at zero temperature using the time-dependent variational method. We analyze the properties of the Thomas-Fermi-gravity and gravity regimes, and we exami...
Analysis of composite nanoparticles with surface integral equations and the multilevel fast multipole algorithm
Ergül, Özgür Salih (IOP Publishing, 2012-06-01)
Composite nanoparticles involving multiple parts with different material properties are analyzed rigorously with surface integral equations and the multilevel fast multipole algorithm. Accuracy and efficiency of the developed parallel implementation are demonstrated on spherical objects with dielectric, perfectly conducting, plasmonic, and double-negative regions. Significant effects of the formulation on numerical solutions are also considered to show the tradeoff between the efficiency and accuracy.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
L. Amirouche and Ş. Erkoç, “Structural features and energetics of Znn-mCdm (n=7,8) microclusters and Zn-50, Cd-50, and Zn25Cd25 nanoparticles: Molecular-dynamics simulations,”
PHYSICAL REVIEW A
, pp. 0–0, 2003, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/53396.