FINITE ELEMENT ERROR ANALYSIS OF A MANTLE CONVECTION MODEL

2018-01-01
John, Volker
Kaya Merdan, Songül
Novo, Julia
A mantle convection model consisting of the stationary Stokes equations and a time dependent convection-diffusion equation for the temperature is studied. The Stokes problem is discretized with a conforming inf-sup stable pair of finite element spaces and the temperature equation is stabilized with the SUPG method. Finite element error estimates are derived which show the dependency of the error of the solution of one problem on the error of the solution of the other equation. The dependency of the error bounds on the coefficients of the problem is monitored.
INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING

Suggestions

The BEM Solutions of MHD Flow and Heat Transfer in a Rectangular Duct with Temperature Dependent Viscosity
Kaya, Elif Ebren; Tezer, Münevver (2019-01-01)
The steady, laminar, fully developed magnetohydrodynamic (MHD) flow of an incompressible, electrically conducting fluid with temperature dependent viscosity is studied in a rectangular duct together with its heat transfer. Although the induced magnetic field is neglected due to the small Reynolds number, the Hall effect, viscous and Joule dissipations are taken into consideration. The momentum and the energy equations are solved iteratively. Firstly, the momentum equation is solved by using the boundary ele...
SECOND ORDER NUMERICAL METHODS FOR NAVIER-STOKES AND DARCY-BRINKMAN EQUATIONS
DEMİR, Medine; Kaya Merdan, Songül; Bayram Çıbık, Aytekin; Department of Mathematics (2022-6-28)
In this thesis, second-order, efficient and reliable numerical stabilization methods are considered for approximating solutions to the incompressible, viscous fluid flow driven by the Navier-Stokes equations and for the Darcy-Brinkman equations driven by double-diffusive convection. The standard Galerkin finite element method remains insufficient for accurately solving these complex nonlinear equations that creates some problems such as numerical instabilities and unphysical oscillations in the solution. A ...
The application of BEM to MHD flow and heat transfer in a rectangular duct with temperature dependent viscosity
Ebren Kaya, Elif; Tezer, Münevver ( EC LTD.; 2018-07-11)
The steady, laminar, fully developed MHD flow of an incompressible, electrically conducting fluid with temperature dependent viscosity is studied in a rectangular duct together with its heat transfer. Although the induced magnetic field is neglected due to the small Reynolds number, the Hall effect, viscous and Joule dissipations are taken into consideration. The momentum equation for the pipe-axis velocity and the energy equation are solved iteratively. Firstly, the momentum equation is solved by using the...
Finite element method solution of electrically driven magnetohydrodynamic flow
Nesliturk, AI; Tezer, Münevver (Elsevier BV, 2006-08-01)
The magnetohydrodynamic (MHD) flow in a rectangular duct is investigated for the case when the flow is driven by the current produced by electrodes, placed one in each of the walls of the duct where the applied magnetic field is perpendicular, The flow is steady, laminar and the fluid is incompressible, viscous and electrically conducting. A stabilized finite element with the residual-free bubble (RFB) functions is used for solving the governing equations. The finite element method employing the RFB functio...
Finite Element Analyses of the Modified Strain Gradient Theory Based Kirchhoff Microplates
Kandaz, Murat; Dal, Hüsnü (2021-06-01)
In this contribution, the variational problem for the Kirchhoff plate based on the modified strain gradient theory (MSGT) is derived, and the Euler-Lagrange equations governing the equation of motion are obtained. The Galerkin-type weak form, upon which the finite element method is constructed, is derived from the variational problem. The shape functions which satisfy the governing homogeneous partial differential equation are derived as extensions of Adini-Clough-Melosh (ACM) and Bogner-Fox-Schmit (BFS) pl...
Citation Formats
V. John, S. Kaya Merdan, and J. Novo, “FINITE ELEMENT ERROR ANALYSIS OF A MANTLE CONVECTION MODEL,” INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, pp. 677–698, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/53578.