Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Dry Dock Detection in Satellite Images with Representation Learning
Date
2013-04-26
Author
Aktaş, Ümit Ruşen
Firat, Orhan
Yarman Vural, Fatoş Tunay
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
176
views
0
downloads
Cite This
In this study, we propose a method to detect dry docks, a harbour man-made object which is hard to recognize, using representation learning in satellite images. Dry docks are coastal structures which may include ships for repairing purposes, and they exist in harbour regions. The search space is pruned by making use of two low-level features that invariantly define docks, and remaining samples are used to train a representation learning system. Experimental results suggest that classification methods using learned features have similar performances to those using handcrafted features, which are proposed by the field expert. The results also provide insight on the applicability of the same methodology on detection of different objects in remotely sensed images, without wasting any effort.
Subject Keywords
Object recognition
,
Representation learning
URI
https://hdl.handle.net/11511/53601
Collections
Department of Computer Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Geospatial Object Recognition From High Resolution Satellite Imagery
Ergul, Mustafa; Alatan, Abdullah Aydın (2013-01-01)
In this paper, a novel automatic geo-spatial object recognition algorithm from high resolution satellite imagery is proposed. The proposed algorithm consists of two main steps; the generation of hypothesis with a local feature based algorithm and verification step with a shape based approach. The superiority of this method is the ability of minimization of false alarm number in the recognition and this is because object shape includes more characteristic and discriminative information about object identity ...
An automatic geo-spatial object recognition algorithm for high resolution satellite images
Ergul, Mustafa; Alatan, Abdullah Aydın (2013-09-26)
This paper proposes a novel automatic geo-spatial object recognition algorithm for high resolution satellite imaging. The proposed algorithm consists of two main steps; a hypothesis generation step with a local feature-based algorithm and a verification step with a shape-based approach. In the hypothesis generation step, a set of hypothesis for possible object locations is generated, aiming lower missed detections and higher false-positives by using a Bag of Visual Words type approach. In the verification s...
A new robust method for bridge detection from high resolution electro optic satellite images
Gedik, Ekın; Cınar, Umut; Karaman, Ersin; Çetin, Yasemin; Halıcı, Uğur (null; 2012-05-09)
In this paper, an automatic approach for identifying bridges over water in satellite images is proposed. The proposed algorithm has three main steps. It starts with extracting the water regions in the satellite image by thresholding the NIR and clustering the NDWI images. Next possible river and water canals in the extracted water mask are identified by certain geometric constraints. Finally possible bridge regions are extracted by morphological operations applied to the water and river-canal mask....
Filtering of satellite images in geological lineament analyses: an application to a fault zone in Central Turkey
Süzen, Mehmet Lütfi (1998-04-01)
Lineament extraction and analysis is one of the routines in mapping large areas using remotely-sensed data, most of which is the satellite images. In this study, we aimed to test different lineament extraction techniques including single band, multiband enhancements and spatial domain filtering techniques. A fast algorithm has been developed for time and cost limited surveys in an area with known dominant and/or any selected orientation of lineaments. During the study for single band analysis, histogram equ...
Deep Distance Metric Learning For Maritime Vessel Identification
Gundogdu, Erhan; Solmaz, Berkan; Koç, Aykut; Yucesoy, Veysel; Alatan, Abdullah Aydın (2017-05-18)
This paper addresses the problem of maritime vessel identification by exploiting the state-of-the-art techniques of distance metric learning and deep convolutional neural networks since vessels are the key constituents of marine surveillance. In order to increase the performance of visual vessel identification, we propose a joint learning framework which considers a classification and a distance metric learning cost function. The proposed method utilizes the quadruplet samples from a diverse image dataset t...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ü. R. Aktaş, O. Firat, and F. T. Yarman Vural, “Dry Dock Detection in Satellite Images with Representation Learning,” 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/53601.