Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Prediction of Vibro-Acoustic Response of Enclosed Spaces by Using Structural Modification Techniques
Date
2010-09-22
Author
Demirkan, O.
BAŞDOĞAN, FATMA İPEK
Özgüven, Hasan Nevzat
Çalışkan, Mehmet
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
0
views
0
downloads
Low frequency noise caused by vibrating panels can become a problem for vehicles from NVH standpoint. The vibro-acoustic analysis of a simplified vehicle model is presented in this study. Analysis of vibro-acoustic behavior includes frequency response analysis of structure by Finite Element Method (FEM) and sound pressure level (SPL) prediction of the cabin interior by Boundary Element Method (BEM). The structural design of the vibrating panels can be modified by adding stiffeners to improve the acoustic field inside the cabin. The dynamic analysis of the structural model must be repeated after every modification which will be a time consuming process in the design stage. In this study, a methodology that utilizes the frequency response functions (FRFs) of the original model for the reanalysis of the structure that is subjected to structural modification is adapted. Modal analysis of the original structure is performed only once to obtain the receptance values. Then, the structural modification method is used to calculate the receptances of the modified system. The structural modification method uses the receptances of the original system and the dynamic stiffness matrix of the modifying part of the structure. The response of the structure obtained from receptances of the modified structure is then used to supply vibration data as boundary condition for acoustic analysis of the cavity for SPL prediction at desired points.
Subject Keywords
Frequency
URI
https://hdl.handle.net/11511/53803
Collections
Department of Mechanical Engineering, Conference / Seminar