Time Preference aware Dynamic Recommendation Enhanced with Location, Social Network and Temporal Information

2016-08-21
Ozsoy, Makbule Gulcin
Polat, Faruk
Alhajj, Reda
Social networks and location based social networks have many active users who provide various kind of data, such as where they have been, who their friends are, which items they like more, when they go to a venue. Location, social network and temporal information provided by them can be used by recommendation systems to give more accurate suggestions. Also, recommendation systems can provide dynamic recommendations based on the users' preferences, such that they can give different recommendations for different hours of the day or different days of the week. In this paper, we propose a recommendation system which considers the users' temporal preference to give dynamic recommendation. The recommendation method uses multi-objective optimization approach and gives point of interest (POI) recommendation using several different criteria, namely past check-in locations, hometown of users, time of check-ins, friendship and influence among users.

Suggestions

Context aware friend recommendation for location based social networks using random walk
Bağcı, Hakan; Karagöz, Pınar (null; 2016-04-10)
The location-based social networks (LBSN) facilitate users to check-in their current location and share it with other users. The accumulated check-in data can be employed for the benefit of users by providing personalized recommendations. In this paper, we propose a random walk based context-aware friend recommendation algorithm (RWCFR). RWCFR considers the current context (i.e. current social relations, personal preferences and current location) of the user to provide personalized recommendations. Our LBSN...
Context-aware location recommendation by using a random walk-based approach
Bagci, Hakan; Karagöz, Pınar (2016-05-01)
The location-based social networks (LBSN) enable users to check in their current location and share it with other users. The accumulated check-in data can be employed for the benefit of users by providing personalized recommendations. In this paper, we propose a context-aware location recommendation system for LBSNs using a random walk approach. Our proposed approach considers the current context (i.e., current social relations, personal preferences and current location) of the user to provide personalized ...
Multi-Objective Optimization Based Location and Social Network Aware Recommendation
Ozsoy, Makbule Gulcin; Polat, Faruk; Alhajj, Reda (2014-10-25)
Social networks, personal blog pages, on-line transaction web-sites, expertise web pages and location based social networks provide an attractive platform for millions of users to share opinions, comments, ratings, etc. Having this kind of diverse and comprehensive information leads to difficulties for users to reach the most appropriate and reliable conclusions. Recommendation systems form one of the solutions to deal with the information overload problem by providing personalized services. Using spatial, ...
TRUST-AWARE LOCATION RECOMMENDATION IN LOCATION-BASED SOCIAL NETWORKS
Cantürk, Deniz; Karagöz, Pınar; Department of Computer Engineering (2021-8-9)
Users can share their location with other social network users through location-embedded information in LBSNs (Location-Based Social Network). LBSNs contain useful resources, such as user check-in activities, for building a personalized recommender system. Trust in social networks is another important concept that has been integrated into a recommendation system in various settings. In this thesis, we propose two novel techniques for location recommendation, TLoRW and SgWalk, to improve recommendation perfo...
Contextual Feature Analysis to Improve Link Prediction for Location Based Social Networks
Bayrak, Ahmet Engin; Polat, Faruk (2014-10-01)
In recent years, people started to communicate, interact, maintain relationship and share data (image, video, note, location, etc.) with their acquaintances through varying online social network sites. Online social networks with location and time sharing/interaction among people are called Location Based Social Networks (LBSNs). Link prediction in social networks aims at predicting future possible links for representing the real life relations better. In this work, we studied the link prediction problem an...
Citation Formats
M. G. Ozsoy, F. Polat, and R. Alhajj, “Time Preference aware Dynamic Recommendation Enhanced with Location, Social Network and Temporal Information,” 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/54550.