Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
RESULTS ON THE SUPREMUM OF FRACTIONAL BROWNIAN MOTION
Date
2011-04-01
Author
Vardar Acar, Ceren
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
1
views
0
downloads
We show that the distribution of the square of the supremum of reflected fractional Brownian motion up to time a, with Hurst parameter-H greater than 1/2, is related to the distribution of its hitting time to level 1, using the self similarity property of fractional Brownian motion. It is also proven that the second moment of supremum of reflected fractional Brownian motion up to time a is bounded above by a(2H). Similar relations are obtained for the supremum of fractional Brownian motion with Hurst parameter greater than 1/2, and its hitting time to level 1. What is more, we obtain an upper bound on the complementary probability distribution of the supremum of fractional Brownian motion and reflected fractional Brownian motion up to time a, using Jensen's and Markov's inequalities. A sharper bound is observed on the distribution of the supremum of fractional Brownian motion by the properties of Gamma distribution. Finally, applications of the given results to financial markets are investigated, and partial results are provided.
Subject Keywords
Fractional Brownian motion
,
Reflected fractional Brownian motion
,
Self similarity property
,
Hitting time
,
Gamma distribution
,
Hurst parameter
,
Markov's inequality
,
Jensen's inequality
URI
https://hdl.handle.net/11511/54607
Journal
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS
Collections
Department of Statistics, Article