MRF Based Image Segmentation Augmented with Domain Specific Information

2013-09-13
Karadag, Ozge Oztimur
Yarman Vural, Fatoş Tunay
A Markov Random Field based image segmentation system which combines top-down and bottom-up segmentation approaches is proposed in this study. The system is especially proposed for applications where no labeled training set is available, but some priori general information referred as domain specific information about the dataset is available. Domain specific information is received from a domain expert and formalized by a mathematical representation. The type of information and its representation depends on the content of the image dataset to be segmented. This information is integrated to the segmentation process in an unsupervised framework. Due to the inclusion of domain specific information, this approach can be considered as a first step to semantic image segmentation under an unsupervised MRF model. The proposed system is compared with the state of the art unsupervised image segmentation methods quantitatively via two evaluation metrics; consistency error and probabilistic rand index and satisfactory results are obtained.

Suggestions

Image segmentation by fusion of low level and domain specific information via Markov Random Fields
Karadag, Ozge Oztimur; Yarman Vural, Fatoş Tunay (2014-09-01)
We propose a new segmentation method by fusing a set of top-down and bottom-up segmentation maps under the Markov Random Fields (MRF) framework. The bottom-up segmentation maps are obtained by varying the parameters of an unsupervised segmentation method, such as Mean Shift. The top-down segmentation maps are constructed from some priori information, called domain specific information (DSI), received from a domain expert in the form of general properties about the image dataset. The properties are then used...
REGION-BASED IMAGE SEGMENTATION VIA GRAPH CUTS
Cigla, Cevahir; Alatan, Abdullah Aydın (2008-01-01)
A graph theoretic color image segmentation algorithm is proposed, in which the popular normalized cuts image segmentation method is improved with modifications on its graph structure. The image is represented by a weighted undirected graph, whose nodes correspond to over-segmented regions, instead of pixels, that decreases the complexity of the overall algorithm. In addition, the link weights between the nodes are calculated through the intensity similarities of the neighboring regions. The irregular distri...
Image segmentation with unified region and boundary characteristics within recursive shortest spanning tree
Esen, E.; Alp, Y. K. (2007-06-13)
The lack of boundary information in region based image segmentation algorithms resulted in many hybrid methods that integrate the complementary information sources of region and boundary, in order to increase the segmentation performance. In compliance with this trend, we propose a novel method to unify the region and boundary characteristics within the canonical Recursive Shortest Spanning Tree algorithm. The main idea is to incorporate the boundary information in the distance metric of RSST with minor cha...
Low-Level Hierarchical Multiscale Segmentation Statistics of Natural Images
Akbaş, Emre (2014-09-01)
This paper is aimed at obtaining the statistics as a probabilistic model pertaining to the geometric, topological and photometric structure of natural images. The image structure is represented by its segmentation graph derived from the low-level hierarchical multiscale image segmentation. We first estimate the statistics of a number of segmentation graph properties from a large number of images. Our estimates confirm some findings reported in the past work, as well as provide some new ones. We then obtain ...
Segmentation Fusion for Building Detection Using Domain-Specific Information
Karadag, Ozge Oztimur; Senaras, Caglar; Yarman Vural, Fatoş Tunay (2015-07-01)
Segment-based classification is one of the popular approaches for object detection, where the performance of the classification task is sensitive to the accuracy of the output of the initial segmentation. Majority of the object detection systems directly use one of the generic segmentation algorithms, such as mean shift or k-means. However, depending on the problem domain, the properties of the regions such as size, color, texture, and shape, which are suitable for classification, may vary. Besides, fine tu...
Citation Formats
O. O. Karadag and F. T. Yarman Vural, “MRF Based Image Segmentation Augmented with Domain Specific Information,” 2013, vol. 8157, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/54725.