Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Improvement of Hyperspectral Classification Accuracy with Limited Training Data Using Meanshift Segmentation
Date
2014-04-25
Author
Özdemir, Okan Bilge
Çetin, Yasemin
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
2
views
0
downloads
In this study, the performance of hyperspectral classification algorithms with limited training data investigated. Support Vector Machines (SVM) with Gaussian kernel is used. Principle Component Analysis (PCA) is employed for preprocessing and meanshift segmentation is used to incorporate spatial information with spectral information to observe the effect spatial information. Pattern search algorithm is used to optimize meanshift segmentation parameters. The performance of the algorithm is demonstrated on high resolution Pavia University hyperspectral data.
Subject Keywords
Hyperspectral classification
,
Support vector machines
,
Meanshift segmentation
,
Pattern search
URI
https://hdl.handle.net/11511/54754
Collections
Graduate School of Informatics, Conference / Seminar