Fuzzy neural network learning method for time series analysis using multivariate autoregression

This paper describes how temporal fuzzy neural network model proposed in [4] can be applied to time series analysis when a multivariate autoregressive model is constructed. The fuzzy multivariate autoregression procedure is described first, then the temporal fuzzy neural network model using this procedure is presented.
11th International Conference on Computer Applications in Industry and Engineering


Quantitative measures of observability for stochastic systems
Subaşı, Yüksel; Demirekler, Mübeccel; Department of Electrical and Electronics Engineering (2012)
The observability measure based on the mutual information between the last state and the measurement sequence originally proposed by Mohler and Hwang (1988) is analyzed in detail and improved further for linear time invariant discrete-time Gaussian stochastic systems by extending the definition to the observability measure of a state sequence. By using the new observability measure it is shown that the unobservable states of the deterministic system have no effect on this measure and any observable part wit...
Digital computation of linear canonical transforms
Koc, Aykut; Ozaktas, Haldun M.; Candan, Çağatay; KUTAY, M. Alper (2008-06-01)
We deal with the problem of efficient and accurate digital computation of the samples of the linear canonical transform (LCT) of a function, from the samples of the original function. Two approaches are presented and compared. The first is based on decomposition of the LCT into chirp multiplication, Fourier transformation, and scaling operations. The second is based on decomposition of the LCT into a fractional Fourier transform followed by scaling and chirp multiplication. Both algorithms take similar to N...
Hybrid wavelet-neural network models for time series data
Kılıç, Deniz Kenan; Uğur, Ömür; Department of Financial Mathematics (2021-3-3)
The thesis aims to combine wavelet theory with nonlinear models, particularly neural networks, to find an appropriate time series model structure. Data like financial time series are nonstationary, noisy, and chaotic. Therefore using wavelet analysis helps better modeling in the sense of both frequency and time. S&P500 (∧GSPC) and NASDAQ (∧ IXIC) data are divided into several components by using multiresolution analysis (MRA). Subsequently, each part is modeled by using a suitable neural network structure. ...
Loop-based conic multivariate adaptive regression splines is a novel method for advanced construction of complex biological networks
Ayyıldız Demirci, Ezgi; Purutçuoğlu Gazi, Vilda; Weber, Gerhard Wilhelm (2018-11-01)
The Gaussian Graphical Model (GGM) and its Bayesian alternative, called, the Gaussian copula graphical model (GCGM) are two widely used approaches to construct the undirected networks of biological systems. They define the interactions between species by using the conditional dependencies of the multivariate normality assumption. However, when the system's dimension is high, the performance of the model becomes computationally demanding, and, particularly, the accuracy of GGM decreases when the observations...
Distance-based discretization of parametric signal manifolds
Vural, Elif (2010-06-28)
The characterization of signals and images in manifolds often lead to efficient dimensionality reduction algorithms based on manifold distance computation for analysis or classification tasks. We propose in this paper a method for the discretization of signal manifolds given in a parametric form. We present an iterative algorithm for the selection of samples on the manifold that permits to minimize the average error in the manifold distance computation. Experimental results with image appearance manifolds d...
Citation Formats
N. Sisman and F. N. Alpaslan, “Fuzzy neural network learning method for time series analysis using multivariate autoregression,” presented at the 11th International Conference on Computer Applications in Industry and Engineering, LAS VEGAS, NV, 1998, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/54794.