Image resolution enhancement using wavelet domain hidden Markov Tree and coefficieent sign estimation

2007-09-19
image resolution enhancement using wavelets is a relatively new subject and many new algorithms have been proposed recently. These algorithms assume that the low resolution image is the approximation subband of a higher resolution image and attempts to estimate the unknown detail coefficients to reconstruct a high resolution image. A subset of these recent approaches utilized probabilistic models to estimate these unknown coefficients. Particularly, Hidden Markov Tree (HMT) based methods using Gaussian mixture models have been shown to produce promising results. However, one drawback of these methods is that, as the Gaussian is symmetrical around zero, signs of the coefficients generated using this distribution function are inherently random, adversely affecting the resulting image quality. In this paper, we demonstrate that, sign information is an important element affecting the results and propose a method to estimate signs of these coefficients more accurately.
IEEE International Conference on Image Processing (ICIP 2007)

Suggestions

Image resolution enhancement using wavelet domain Hidden Markov Tree and coefficient sign estimation
Temizel, Alptekin (2007-01-01)
Image resolution enhancement using wavelets is a relatively new subject and many new algorithms have been proposed recently. These algorithms assume that the low resolution image is the approximation subband of a higher resolution image and attempts to estimate the unknown detail coefficients to reconstruct a high resolution image. A subset of these recent approaches utilized probabilistic models to estimate these unknown coefficients. Particularly, hidden Markov tree (HMT) based methods using Gaussian mixt...
Bayesian multi frame super resolution
Turgay, Emre; Akar, Gözde; Akar, Nail; Department of Electrical and Electronics Engineering (2014)
This thesis aims at increasing the effective resolution of an image using a set of low resolution images. This process is referred to as super resolution (SR) image reconstruction in the literature. This work proposes maximum a-posteriori (MAP) based iterative reconstruction methods for this problem. The first contribution of the thesis is a novel edge preserving SR image reconstruction method. The proposed MAP based estimator uses local gradient direction and amplitude for optimal noise reduction while prese...
Alignment of uncalibrated images for multi-view classification
Arık, Sercan Ömer; Vural, Elif; Frossard, Pascal (2011-12-29)
Efficient solutions for the classification of multi-view images can be built on graph-based algorithms when little information is known about the scene or cameras. Such methods typically require a pairwise similarity measure between images, where a common choice is the Euclidean distance. However, the accuracy of the Euclidean distance as a similarity measure is restricted to cases where images are captured from nearby viewpoints. In settings with large transformations and viewpoint changes, alignment of im...
Design and implementation of a novel visual analysis system for image clasiffication
Altintakan, Ümit Lütfü; Yazıcı, Adnan; Körpeoğlu, İbrahim; Department of Computer Engineering (2013)
Possibilities offered by the technology to create, share and disseminate image and video data have resulted in a rapid increase in the available visual data. However, the data is useless unless it is effectively accessed, which necessitates the semantic analysis of visual data. In this dissertation, we present a novel visual analysis system along with its application to image classification problem. We aim to address the challenges in the area originated from the semantic gap, and to facilitate the research...
Fusion of image segmentation with domain specific information under an unsupervised markov random fields model
Karadağ, Özge Öztimur; Yarman Vural, Fatoş Tunay; Department of Computer Engineering (2014)
The formulation of image segmentation problem is evolved considerably, from the early years of computer vision in 1970s to these years, in 2010s. While the initial studies offer mostly unsupervised approaches, a great deal of recent studies shift towards the supervised solutions. This is due to the advancements in the cognitive science and its influence on the computer vision research. Also, accelerated availability of computational power enables the researchers to develop complex algorithms. Despite the gr...
Citation Formats
A. Temizel, “Image resolution enhancement using wavelet domain hidden Markov Tree and coefficieent sign estimation,” presented at the IEEE International Conference on Image Processing (ICIP 2007), San Antonio, TX, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/55329.