Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
A Proof of the Lucas-Lehmer Test and its Variations by Using a Singular Cubic Curve
Date
2018-01-01
Author
Küçüksakallı, Ömer
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
1
views
0
downloads
We give another proof of the Lucas-Lehmer test by using a singular cubic curve. We also illustrate a practical way to choose a starting term for the Lucas-Lehmer-Riesel test by trial and error. Moreover, we provide a nondeterministic test for determining the primality of integers of the form N = hp(n) - 1 for any odd prime p. We achieve these by using the group structure on a singular cubic curve induced from the group law of elliptic curves.
Subject Keywords
Elliptic curve
,
Jacobi symbol
,
Dickson polynomial
,
Lucas sequence
URI
https://hdl.handle.net/11511/55366
Journal
JOURNAL OF INTEGER SEQUENCES
Collections
Department of Mathematics, Article