Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
TRAINER: A General-Purpose Trainable Short Biosequence Classifer
Date
2013-10-01
Author
OĞUL, HASAN
Kalkan, Alper T.
Umu, Sinan U.
Akkaya, Mahinur
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
1
views
0
downloads
Classifying sequences is one of the central problems in computational biosciences. Several tools have been released to map an unknown molecular entity to one of the known classes using solely its sequence data. However, all of the existing tools are problem-specific and restricted to an alphabet constrained by relevant biological structure. Here, we introduce TRAINER, a new online tool designed to serve as a generic sequence classification platform to enable users provide their own training data with any alphabet therein defined. TRAINER allows users to select among several feature representation schemes and supervised machine learning methods with relevant parameters. Trained models can be saved for future use without retraining by other users. Two case studies are reported for effective use of the system for DNA and protein sequences; candidate effector prediction and nucleolar localization signal prediction. Biological relevance of the results is discussed.
Subject Keywords
Sequence classification
,
Web server
,
K-nearest neighbors
,
Naive Bayes classifier
,
Support vector machine
URI
https://hdl.handle.net/11511/55440
Journal
PROTEIN AND PEPTIDE LETTERS
Collections
Graduate School of Natural and Applied Sciences, Article