Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Rao-Blackwellised Particle Filter for Star-Convex Extended Target Tracking Models
Date
2016-07-08
Author
Özkan, Emre
Wahlstrom, Niklas
Godsill, Simon J.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
3
views
0
downloads
In this paper, we explore the potential gains in using Sequential Monte Carlo (SMC) methods for extended target tracking (ETT) models based on Gaussian processes (GP). The existing random hypersurface based ETT models use Extended/Unscented Kalman filter for inference, which may lead to poor performance under high uncertainty. Particle filters (PFs) are known to provide robust performance in the cases where the non-linear Kalman filtering solutions fail. We design a Rao-Blackwellised particle filter (RBPF) where we exploit the conditional linear Gaussian structure of the GP parameters. We illustrate the gain in the performance with simulations.
URI
https://hdl.handle.net/11511/55669
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar