Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
A Robust Normalization Method for fMRI Data for Brain Decoding
Date
2016-05-19
Author
Yildiz, Ozan
Dogan, Fethiye Irmak
GİLLAM, İLKE
Mizrak, Eda
Yarman Vural, Fatoş Tunay
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
2
views
0
downloads
Functional Magnetic Resonance Imaging (fMRI) methods produce high dimensional representation of cognitive processes under heavy noise due to the limitations of hardware and measurement techniques. In order to reduce the noise and extract useful information from the fMRI data, a sequence of pre-processing techniques, such as smoothing with spatial filters and z-scoring, are used. In this study, we suggest an additional normalization technique based upon a statistical property of fMRI data. We, first, define a random variable V(t) as the average voxel intensity value of a brain volume measured at a time instant t. Then, we measure the Pearson correlation between V(t) and 1/V(t) for all time instances. We observe that the Pearson correlation values are very close to -1, indicating that V(t) and 1/V(t) have a strong negative correlation. We show that one explanation for this property is V(t) being almost surely constant and the small fluctuations on V(t) caused by noise. The proposed method removes these fluctuations on the data resulting in almost surely constant brain volumes V(t) for all values of t. The effectiveness of the proposed normalization method is tested with well-known brain decoding algorithms and voxel selection methods. It is observed that the suggested normalization method improves the performance 1-2 percent on the average. The method also improves the signal to noise ratio.
Subject Keywords
Human Visual-Cortex
,
Representations
,
Patterns
,
Objects
URI
https://hdl.handle.net/11511/55707
DOI
https://doi.org/10.1109/SIU.2016.7496228
Collections
Department of Computer Engineering, Conference / Seminar