Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Chameleon skin-inspired polymeric particles for the detection of toluene vapor
Date
2020-10-01
Author
Avsar, Deniz Isinsu
Büküşoğlu, Emre
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
4
views
0
downloads
Inspired by the structural coloring in nature, especially the crystalline ordering and responsive characteristics of those found in chameleon skins, artificial photonic materials for sensor applications were fabricated. Cholesteric liquid crystals (CLCs) were employed in the templated synthesis of polymeric particles with periodic structures that allow visible light to undergo Bragg reflection and their response was tested against volatile organic compounds (VOCs). We demonstrate that the particles were responsive against toluene with detection limits on the order of 100 ppm. Such sensitivity was shown to be achieved due to the critical steps followed during the CLC-templated synthesis of particles that resulted in the storage of elastic energy in the anisotropic glassy polymer network. In addition, the design of particle-assisted sensor chips that allow easy integration into wearable optical devices for reliable, continuous and online tracking of VOC concentrations is presented. These results proved that sensors developed from the CLC-templated particles can be used multiple times without a significant loss of sensitivity and offered rapid, sensitive and battery-free detection.
Subject Keywords
General Chemistry
,
Condensed Matter Physics
URI
https://hdl.handle.net/11511/56125
Journal
SOFT MATTER
DOI
https://doi.org/10.1039/d0sm01289k
Collections
Department of Chemical Engineering, Article