Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Molecular-dynamics simulations of water clusters
Date
2000-07-01
Author
Erkoç, Şakir
Guneyler, E
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
196
views
0
downloads
Cite This
The local minimum geometries and corresponding energy values of water clusters, [(H2O)(n), n = 2-8], have been investigated by using the molecular dynamics simulation method. In the simulations two different potential energy functions of central-force model, CF and CF2, have been used. Particular attention was paid to investigate the effectiveness of these two empirical potential energy functions. CF has been used for n = 2 only, whereas CF2 has been used for n = 2-8. The cage structure of the water clusters appear for n greater than or equal to 6.
Subject Keywords
Water clusters
,
Molecular dynamics
,
Empirical potentials
URI
https://hdl.handle.net/11511/56375
Journal
PHYSICA E
DOI
https://doi.org/10.1016/s1386-9477(00)00116-8
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Molecular-dynamics simulation of radiation damage on copper clusters
Erkoç, Şakir (2000-07-01)
The effect of radiation damage on copper clusters has been investigated by performing molecular-dynamics simulation using empirical potential energy function for interaction between copper atoms. The external radiation is modeled by giving extra kinetic energy in the range of 5- 50 eV to initially chosen atom in the cluster. It has been found that the atom having extra kinetic energy dissociates independently from the amount of given energy in the studied range.
Molecular-dynamics simulations of nickel clusters
Erkoç, Şakir; Gunes, B; Gunes, P (2000-07-01)
Structural stability and energetics of nickel clusters, Nih (N = 3 - 459), have been inves tigated by molecular-dynamics simulations, A size-dependent empirical model potential energy function has been used in the simulations. Stable structures of the microclusters with sizes N = 3 - 55 and clusters generated from fee crystal structure with sizes N = 79 - 459 have been determined by molecular-dynamics simulations. It has been found that the fivefold symmetry appears on the surface of the spherical clusters....
Molecular-dynamics simulations of silicene nanoribbons under strain
Ince, Alper; Erkoç, Şakir (2012-01-01)
Structural properties of silicene nanoribbons (SiNRs) of varying width have been investigated under 5% and 10% uniaxial strain via classical Molecular-Dynamics simulations at 1 and 300?K temperatures by the aid of atomistic many-body potential energy functions (PEFs). It has been found that under strain, SiNRs show such material properties: they are very ductile, with considerable toughness and a very long plastic range before fragmentation.
Stability of gold clusters: molecular-dynamics simulations
Erkoç, Şakir (2000-09-01)
Structural stability and energetics of gold clusters, Au, (n = 3-555), have been investigated by molecular-dynamics simulations. An empirical model potential energy function has been used in the simulations. Stable structures of the microclusters for n = 3-13 have been determined by molecular-dynamics simulation. It has been found that gold microclusters prefer to form three-dimensional compact structures. Molecular-dynamics simulations have also been performed for spherical gold clusters generated from FCC...
Cluster, surface and bulk properties of ZnCd binary alloys: Molecular-dynamics simulations
Erkoç, Şakir (2005-01-01)
The structural and electronic properties of isolated neutral Zn Cd-n clusters for m+n <= 3 have been investigated by performing density functional theory calculations at B3LYP level. The optimum geometries, vibrational frequencies, electronic structures, and the possible dissosiation channels of the clusters considered have been obtained. An empirical many-body potential energy function (PEF), which comprices two- and three-body atomic interactions, has been developed to investigate the structural features ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ş. Erkoç and E. Guneyler, “Molecular-dynamics simulations of water clusters,”
PHYSICA E
, pp. 40–49, 2000, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56375.