Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Accelerated regular grid traversals using extended anisotropic chessboard distance fields on a parallel stream processor
Date
2007-11-01
Author
Es, Alphan
İşler, Veysi
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
1
views
0
downloads
Modern graphics processing units (GPUs) are an implementation of parallel stream processors. In recent years, there have been a few studies on mapping ray tracing to the GPU. Since graphics processors are not designed to process complex data structures, it is crucial to explore data structures and algorithms for efficient stream processing. In particular ray traversal is one of the major bottlenecks in ray tracing and direct volume rendering methods. In this work we focus on the efficient regular grid based ray traversals on GPU. A new empty space skipping traversal method is introduced. Our method extends the anisotropic chessboard distance structure and employs a GPU friendly traversal algorithm with minimal dynamic branching. Additionally, several previous techniques have been redesigned and adapted to the stream processing model. We experimentally show that our traversal method is considerably faster and better suited to the parallel stream processing than the other grid based techniques.
Subject Keywords
Theoretical Computer Science
,
Computer Networks and Communications
,
Hardware and Architecture
,
Software
,
Artificial Intelligence
URI
https://hdl.handle.net/11511/56428
Journal
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING
DOI
https://doi.org/10.1016/j.jpdc.2007.06.011
Collections
Graduate School of Natural and Applied Sciences, Article