Structural and electronic properties of carbon nanoballs: C-20, C-60, and C-20@C-60

2001-11-01
Erkoç, Şakir
Turker, L
The structural stability of carbon nanoballs (fullerenes) C-20, C-60, and onion type C-20@C-60 has been investigated by performing molecular-dynamics computer simulations. Calculations have been realized by using an empirical many-body potential energy function for carbon. It has been found that C-20 is relatively resistive to heat treatment, however, the onion type structure is relatively less strong against heat treatment. The electronic structure of the systems considered has been also studied by performing density functional theory type calculations.
INTERNATIONAL JOURNAL OF MODERN PHYSICS C

Suggestions

Stability of carbon nanotori
Yazgan, E; Tasci, E; Malcıoğlu, Osman Barış; Erkoç, Şakir (2003-09-12)
The structural stability of carbon nanotori have been investigated by performing molecular--dynamics simulations. The systems considered are C-170, C-360, C-520, and C-750 tori, which have been constructed using an algorithm developed in our laboratory based on Fonseca's idea. Calculations have been realized by using an empirical many-body potential energy function for carbon.
Structural stability of carbon nanocapsules: Molecular-dynamics simulations
Malcıoğlu, Osman Barış; Yilmaz, A; Erkoc, S (2003-09-12)
Structural stability of empty and endohedrally doped carbon nanocapsules have been investigated by performing molecular-dynamics computer simulations. Calculations have been realized by using an empirical many-body potential energy function for carbon. It has been found that empty carbon nanocapsules are relatively more stable with respect to endohedrally doped ones against heat treatment.
Structural properties of carbon nanorods: Molecular-dynamics simulations
Erkoc, S; Malcıoğlu, Osman Barış (2002-03-01)
The formation of carbon nanorods from various types of carbon nanotubes has been investigated by performing molecular-dynamics computer simulations. Calculations have been realized by using an empirical many-body potential energy function for carbon. It has been found that carbon nanorod formed from carbon nanotubes with different chirality is not stable even at low temperature.
Structural and electronic properties of carbon nanotubes
Erkoç, Şakir (2000-02-01)
The structural and electronic properties of optimized open-ended single-wall carbon nanotubes with zigzag geometry have been investigated. The calculations were performed using molecular mechanics, extended Huckel, and AM1-RHF semiempirical molecular orbital methods. it has been found that the density of states of the zigzag model is sensitive to the tube size and changes as the tube length increases. On the other hand the energetics of the tube shows an almost linear dependence to the tube length, and a co...
Effect of chirality on the stability of carbon nanotubes : Molecular-dynamics simulations
Erkoc, S; Malcıoğlu, Osman Barış (2001-07-01)
The effect of chirality on the structural stability of single-wall carbon nanotubes have been investigated by performing molecular-dynamics computer simulations. Calculations have been realized by using an empirical many-body potential energy function for carbon. It has been found that carbon nanotube in chiral structure is more stable under heat treatment relative to zigzag and armchair models. The diameter of the tubes is slightly enlarged under heat treatment.
Citation Formats
Ş. Erkoç and L. Turker, “Structural and electronic properties of carbon nanoballs: C-20, C-60, and C-20@C-60,” INTERNATIONAL JOURNAL OF MODERN PHYSICS C, pp. 1391–1399, 2001, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56489.