Optimization of Parallel, Horizontal, and Laminar Forced Air-Cooled Heat Generating Boards

2011-09-01
ÖZDEMİR, MELEK
Yüncü, Hafit
The objective of this study is to predict numerically the optimal spacing between parallel heat generating boards. The isothermal boards are stacked in a fixed volume of electronic package enclosed by insulated lateral walls, and they are cooled by laminar forced convection of air with prescribed pressure drop. In the numerical procedure, governing equations for the solution of forced convection of constant property incompressible flow through one rectangular channel are solved. Resulting flow and temperature fields in each rectangular channel yield the optimal board-to-board spacing by which maximum heat dissipation rate from the package to the air is achieved. Next, generalized correlations for the determination of the maximum heat transfer rate from the package and optimal spacing between boards are derived in terms of prescribed pressure difference, board length, and density and kinematic viscosity of air. Finally, corresponding correlations are compared with the available two-dimensional studies in literature for infinite parallel plates. [DOI: 10.1115/1.4004097]
JOURNAL OF ELECTRONIC PACKAGING

Suggestions

Optimum design of parallel, horizontal and laminar forced convection air-cooled rectangular channels with insulated lateral surfaces
Özdemir, Mehmet Ozan; Yüncü, Hafit; Department of Mechanical Engineering (2009)
The objective of this thesis is to predict numerically the optimal spacing between parallel heat generating boards. The isothermal boards are stacked in a fixed volume of electronic package enclosed by insulated lateral walls, and they are cooled by laminar forced convection of air with prescribed pressure drop. Fixed pressure drop assumption is an acceptable model for installations in which several parallel boards in electronic equipment receive the coolant from the same source such as a fan. In the numeri...
Investigation of photovoltaic properties of amorphous InSe thin film based Schottky devices
Yilmaz, K.; Parlak, Mehmet; Ercelebi, C. (IOP Publishing, 2007-12-01)
In this study, device behavior of amorphous InSe thin films was investigated through I-V, C-V and spectral response measurements onto SnO2/p-InSe/metal Schottky diode structures. Various metal contacts such as Ag, Au, Al, In and C were deposited onto amorphous p-InSe films by the thermal evaporation technique. The best rectifying contact was obtained in a SnO2/p-InSe/Ag Schottky structure from I-V measurements, while the Au contact had poor rectification. Other metal contacts (Al, In and C) showed almost oh...
RC Performance Evaluation of Interconnect Architecture Options Beyond the 10-nm Logic Node
Kıncal, Serkan; Abraham, Mathew C.; Schuegraf, Klaus (Institute of Electrical and Electronics Engineers (IEEE), 2014-06-01)
This paper summarizes the findings of an RC performance modeling approach for evaluating various material and architecture options by which interconnect wires are incorporated onto integrated circuits. For the present dual-damascene structure, the grain boundary and surface scattering modes are identified as the top contributors to resistance degradation, along with the cross-sectional area consumed by the liner/barrier layers. Self-forming barriers, a technology that provides direct Cu-insulator interfaces...
Characterization of chiral metamaterial sensor with high sensitivity
Dalgac, Sekip; BAKIR, MEHMET; KARADAĞ, FARUK; ÜNAL, EMİN; KARAASLAN, MUHARREM; Sabah, Cumali (Elsevier BV, 2020-02-01)
In this study, a chiral metamaterial sensor applications are created by placing asymmetrically two meander line front and back side of the substrate layer. Characterization of the dielectric constant, thickness and loss tangent have been performed both in simulation and experimental methods. Different Arlon type materials used for showing the effects of dielectric constant on transmission coefficient. Obtained bandwidths for characterization are greater than the similar studies which verifyies increased sen...
General-Purpose Characteristic Basis Finite Element Method for Multi-Scale Electrostatic and Electromagnetic Problems
Ozgun, Ozlem; Mittra, Raj; Kuzuoğlu, Mustafa (Informa UK Limited, 2010-01-01)
This article presents a noniterative and parallel finite element technique that is tailored for a wide class of electromagnetic boundary problems, covering both quasi-static and time-harmonic regimes. This approach, called the characteristic basis finite element method, combines the domain decomposition technique with the use of characteristic basis functions that are generated by employing a finite number of point charges or dipole-type sources, depending upon whether work is being done in a quasi-static o...
Citation Formats
M. ÖZDEMİR and H. Yüncü, “Optimization of Parallel, Horizontal, and Laminar Forced Air-Cooled Heat Generating Boards,” JOURNAL OF ELECTRONIC PACKAGING, pp. 0–0, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56551.