Effects of Water Related Defects on Pentacene and Picene Molecules

2010-10-01
Pekoz, R.
Erkoç, Şakir
The effect of water molecule related defects in two different kind of polyacene molecules, pentacene and picene, have been reported by means of density functional theory calculations. The structural and electronic properties of the oxygen-, hydrogen- and hydroxide-defected pentacene and picene molecules have been investigated. Defected pentacene molecules are found to be more stable than defected picene molecules by 0.02 eV. HOMO-LUMO energy differences of defected pentacene are larger than that of pure pentacene whereas, defected picene molecules have smaller ones.
JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE

Suggestions

Enhancement of H-2 Storage in Carbon Nanotubes via Doping with a Boron Nitride Ring
Onay, Aytun Koyuncular; Erkoç, Şakir (American Scientific Publishers, 2009-04-01)
Hydrogen storage capacity of carbon nanotubes with different chirality have been investigated by performing quantum chemical methods at semiempirical and DFT levels of calculations. It has been found that boron nitrite substitutional doping increases the hydrogen storage capacity of carbon nanotubes.
Structural Properties of ZnO Nanoparticels and Nanorings: Molecular Dynamics Simulations
Kilic, Mehmet Emin; Erkoç, Şakir (American Scientific Publishers, 2013-06-01)
Structural properties of zinc oxide (ZnO) nanoparticles and nanorings have been investigated by performing both equilibrium and nonequilibrium classical molecular dynamics simulations at various temperatures. An atomistic potential energy function has been used to represent the interactions among the atoms. It has been found that ZnO nanostructures undergo a structural change depending on temperature and different models. ZnO nanorings change into rod like structures with the effect of temperature. On the o...
Molecular Dynamics Simulations of Zinc Oxide Nanostructures Under Strain: I-Nanoribbons
Kilic, Mehmet Emin; Erkoç, Şakir (American Scientific Publishers, 2013-01-01)
Structural properties of zinc oxide nanoribbons have been investigated by performing classical molecular dynamics simulations. Atomistic potential energy function has been used to represent the interactions among the atoms. Strain has been applied to the generated ZnO nanostructures along their length, which has been realized at two different temperatures, namely 1 K and 300 K. It has been found that strained ZnO nanostructures undergo a structural change depending on temperature and geometry.
Effects of annealing on structural, electrical and optical properties of AgGa(Se0.5S0.5)(2) thin films deposited by using sintered stoichometric powder
KARAAĞAÇ, HAKAN; Parlak, Mehmet (Wiley, 2009-04-01)
The structural, electrical and optical properties of AgGa(Se0.5S0.5)(2) thin films deposited by using the thermal evaporation method have been investigated as a function of annealing in the temperature range of 450-600 degrees C. X-ray diffraction (X-RD) analysis showed that the structural transformation from amorphous to polycrystalline structure started at 450 degrees C with mixed binary phases of Ga2Se3, Ga2S3, ternary phase of AgGaS2 and single phase of S. The compositional analysis with the energy disp...
Investigation of Metal and Non-Metal Doped Dimer and Trimer C-60 Fullerene Chains as Prospective Spin Cluster Qubits
Polad, S.; Erkoç, Şakir (American Scientific Publishers, 2011-04-01)
We have calculated the optimized geometries, electronic structures and spin distributions of metal and non-metal elements Li, Na, N and P doped C60 fullerene dimers and trimers with different spin multiplicities using hybrid density functional theory (DFT) at the B3LYP/6-31G level of theory. Natural population analysis and Mulliken population analysis show that non-metal elements (N, P) inside the C60 fullerene dimers and trimers are well isolated and preserve their electronic structures while charge transf...
Citation Formats
R. Pekoz and Ş. Erkoç, “Effects of Water Related Defects on Pentacene and Picene Molecules,” JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, pp. 1889–1893, 2010, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56554.