Raman frequency shifts for ammonia solid I near the melting point

1999-07-01
We have performed in this study the calculation of the Raman frequencies for two translational modes and one librational mode in the ammonia solid I near the melting point. We have obtained the Raman frequencies as a function of temperature for some fixed pressure by means of the Gruneisen relation using the volume data from the literature. Our calculated Raman frequencies can be compared with experimental data available in the literature.
JOURNAL OF PHYSICAL CHEMISTRY A

Suggestions

Raman Frequencies calculated as a function of pressure for the rotatory lattice mode in ammonia solid II near the melting point
Yurtseven, Hasan Hamit (2004-04-01)
This study gives our calculations for the Raman frequencies of the rotatory lattice mode in ammonia solid II near the melting point. The Raman frequencies of this mode are calculated as a function of the pressure using the volume data for the fixed temperatures of 230.4 K, 263.4 K, and 297.5 K by means of our Gruneisen relation. Our calculated frequencies can be examined experimentally when the Raman measurements are performed at various pressures for the constant temperatures considered.
Raman Frequencies Calculated at Various Pressures in Phase I of Benzene
Tari, Ozlem; Yurtseven, Hasan Hamit (2013-04-01)
We calculate in this study the pressure dependence of the frequencies for the Raman modes of A (A(g)), B (A(g), B-2g) and C (B-1g, B-3g) at constant temperatures of 274 and 294K (room temperature) for the solid phase I of benzene. Using the mode Gruneisen parameter of each lattice mode, which correlates the pressure dependence of the crystal volume and the frequency, the Raman frequencies of those modes are computed for phase I of benzene. Our results show that the Raman frequencies of the three lattice mod...
Ultrasonic frequencies calculated for the q[100] mode in the first-order, tricritical and the second-order phase transitions of NH4Cl
Yurtseven, Hasan Hamit (2001-06-01)
This study correlates the volume changes to the ultrasonic frequencies of the q[100] mode of NH4Cl for the first-order, tricritical and the second-order phase transitions in this crystal. Using these correlations we were able to calculate the ultrasonic frequencies of this mode at the pressures of 0, 0.6 and 1.1 kbar (first-order), 1.6 kbar (tricritical) and 2.15 kbar (second-order) by means of the volume change data from the literature. Our calculated frequencies are in good agreement with the observed dat...
Temperature dependence of the Raman frequencies and bandwidths close to phase transitions in ammonium halides
Yurtseven, Hasan Hamit (2001-09-01)
In this study, we give the temperature dependence of our observed frequencies and bandwidths for the Raman optical modes in the ammonium halides close to the phase transitions of the first order (NH4 Br), tricritical (NH4Cl) and second order (NH4Cl). Using the predictions of an [sing pseudospin-phonon coupled model, which considers interactions between two spin and two phonons, our observed Raman data have been interpreted qualitatively. Our results show that an Ising model considered here can explain the o...
RAMAN STUDY OF BENZENE NEAR THE MELTING POINT
Yurtseven, Hasan Hamit (World Scientific Pub Co Pte Lt, 2013-06-10)
We calculate here the Raman frequencies of some lattice modes as a function of pressure at constant temperatures for the solid and liquid phases of benzene. The observed data for the molar volume from literature is used to calculate the Raman frequencies through the mode Gruneisen parameter in benzene.
Citation Formats
H. H. Yurtseven, “Raman frequency shifts for ammonia solid I near the melting point,” JOURNAL OF PHYSICAL CHEMISTRY A, pp. 5900–5904, 1999, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56575.