Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Molecular Dynamic Simulations of Pristine and Defective Graphene Nanoribbons Under Strain
Date
2013-02-01
Author
Tuzun, Burcu
Erkoç, Şakir
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
0
views
0
downloads
Structural properties of pristine and defective graphene nanoribbons have been investigated by stretching them under 5 percent and 10 percent uniaxial strain until the nanoribbons fracture. The stretching process have been carried out by performing molecular dynamics simulations at 1 K and 300 K to determine the temperature effect on the structure of the graphene nanoribbons. Results of the simulations indicated that the conformation of the initial graphene nanoribbon model, temperature, and stretching speed have a considerable effect on the structural properties, however they have a slight effect on the strain value. The maximum strain at which fracture occurs is found to be 46.41 percent for zigzag 8 layer pristine graphene nanoribbon at 1 K and fast stretching process. On the other hand, the defect formation energy is strongly affected from temperature and nanoribbon type. Stone-Wales formation energy is calculated to be 1.60 eV at 1 K whereas 30.13 eV at 300 K for armchair graphene nanoribbon.
Subject Keywords
Electrical and Electronic Engineering
,
General Materials Science
,
General Chemistry
,
Condensed Matter Physics
,
Computational Mathematics
URI
https://hdl.handle.net/11511/56580
Journal
JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE
DOI
https://doi.org/10.1166/jctn.2013.2721
Collections
Department of Physics, Article