Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Molecular Dynamic Simulations of Pristine and Defective Graphene Nanoribbons Under Strain
Date
2013-02-01
Author
Tuzun, Burcu
Erkoç, Şakir
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
200
views
0
downloads
Cite This
Structural properties of pristine and defective graphene nanoribbons have been investigated by stretching them under 5 percent and 10 percent uniaxial strain until the nanoribbons fracture. The stretching process have been carried out by performing molecular dynamics simulations at 1 K and 300 K to determine the temperature effect on the structure of the graphene nanoribbons. Results of the simulations indicated that the conformation of the initial graphene nanoribbon model, temperature, and stretching speed have a considerable effect on the structural properties, however they have a slight effect on the strain value. The maximum strain at which fracture occurs is found to be 46.41 percent for zigzag 8 layer pristine graphene nanoribbon at 1 K and fast stretching process. On the other hand, the defect formation energy is strongly affected from temperature and nanoribbon type. Stone-Wales formation energy is calculated to be 1.60 eV at 1 K whereas 30.13 eV at 300 K for armchair graphene nanoribbon.
Subject Keywords
Electrical and Electronic Engineering
,
General Materials Science
,
General Chemistry
,
Condensed Matter Physics
,
Computational Mathematics
URI
https://hdl.handle.net/11511/56580
Journal
JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE
DOI
https://doi.org/10.1166/jctn.2013.2721
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Molecular Dynamics Simulations of ZnO Nanostructures Under Strain: II-Nanorods
Kilic, Mehmet Emin; Erkoç, Şakir (American Scientific Publishers, 2013-01-01)
Structural properties of zinc oxide nanorods have been investigated by performing classical molecular dynamics simulations. Atomistic potential energy function has been used to represent the interactions among the atoms. Strain has been applied to the generated ZnO nanostructures along their length, which has been realized at two different temperatures, 1 K and 300 K. It has been found that ZnO nanostructures following strain application undergo a structural change depending on temperature and geometry.
Molecular Dynamics Simulations of Zinc Oxide Nanostructures Under Strain: I-Nanoribbons
Kilic, Mehmet Emin; Erkoç, Şakir (American Scientific Publishers, 2013-01-01)
Structural properties of zinc oxide nanoribbons have been investigated by performing classical molecular dynamics simulations. Atomistic potential energy function has been used to represent the interactions among the atoms. Strain has been applied to the generated ZnO nanostructures along their length, which has been realized at two different temperatures, namely 1 K and 300 K. It has been found that strained ZnO nanostructures undergo a structural change depending on temperature and geometry.
Structural Properties of Silicon Nanorods Under Strain: Molecular Dynamics Simulations
Ozdamar, Burak; Erkoç, Şakir (American Scientific Publishers, 2013-01-01)
Structural properties of silicon nanorods generated from low-index plane surfaces (100), (110), and (111) with different cross-sections have been investigated by performing classical molecular dynamics simulations. An atomistic potential function consisting of a combination of two- and three-body interactions has been used to represent the interactions among the atoms. Strain has been applied to the generated Si nanorods along the uniaxial rod direction at two different temperatures; 1 K and 300 K. Si nanor...
Endohedral Li/Li+ Doped Stone-Wales Defected Carbon Nanocapsules
Pekoez, Rengin; Erkoç, Şakir (American Scientific Publishers, 2009-01-01)
The structural properties and energetics of endohedral lithium and lithium ion doped Stone-Wales defected armchair and zigzag carbon nanocapsule systems have been explored theoretically. In order to investigate the effect of the defect on the systems, pristine capsule calculations have been also performed and presented briefly. The optimizations of the systems have been performed within the semi-empirical molecular orbital method at the PM3 level and the energies have been calculated with the density functi...
Enhancement of H-2 Storage in Carbon Nanotubes via Doping with a Boron Nitride Ring
Onay, Aytun Koyuncular; Erkoç, Şakir (American Scientific Publishers, 2009-04-01)
Hydrogen storage capacity of carbon nanotubes with different chirality have been investigated by performing quantum chemical methods at semiempirical and DFT levels of calculations. It has been found that boron nitrite substitutional doping increases the hydrogen storage capacity of carbon nanotubes.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Tuzun and Ş. Erkoç, “Molecular Dynamic Simulations of Pristine and Defective Graphene Nanoribbons Under Strain,”
JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE
, pp. 470–480, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56580.