Ternary-mixture grinding of ceramic raw materials

Ipek, H
Ucbas, Y
Hoşten, Çetin
Batch experiments were carried out on the dry ball milling of commonly used ceramic raw materials quartz, kaolin and feldspar, singly and as ternary mixtures. The modified form of the Charles energy-size reduction equation was used to calculate the energy consumed by each of the components in the mixture. The results confirmed the validity of the mass fraction hypothesis for energy split between the components that had been defined and verified for the binary mixtures of equal-density minerals. The distribution and size module of the minerals remained the same whether they were ground separately or in a ternary mixture. (C) 2004 Published by Elsevier Ltd.


The bond work index of mixtures of ceramic raw materials
Ipek, H; Ucbas, Y; Hoşten, Çetin (Elsevier BV, 2005-08-01)
The Bond method of grindability was applied to ceramic raw materials (quartz, kaolin and feldspar) and to their binary and ternary mixtures. The Bond work indices of the admixtures containing a softer component (kaolin) were found to be greater than the weighted average of the work indices of the individual components in the mixture. As a result, separate grinding of ceramic raw materials seems to require less specific energy input than grinding them in admixtures.
Hydrometallurgical processing of nontronite type lateritic nickel ores by MHP process
Kose, C. H.; Topkaya, Yavuz Ali (Elsevier BV, 2011-04-01)
The research work presented in this paper determined the optimum conditions at which nickel and cobalt could be obtained at maximum efficiency from the column leach liquor of the lateritic nickel ore existing in Gordes region of Manisa in Turkey by performing effective hydrometallurgical methods. This column leach solution was initially neutralized and purified from its basic impurities by a two-stage iron removal process, nickel and cobalt were precipitated in the form of mixed hydroxide precipitate from t...
Performance assessment of cement grout borehole plugs in basalt
Akgün, Haluk (Elsevier BV, 1994-01-01)
Flow tests have been conducted on expansive cement grout plugs with diameters of 160 mm and 200 mm, and length-to-diameter ratios of one, in boreholes in basalt blocks and in steel pipes. Two types of flow tests have been performed: pseudo-constant head tests and transient pulse tests. Hydration temperatures of cement grout plugs have been monitored in steel pipes with inside diameters ranging from 110 mm to 200 mm. During flow tests, basalt blocks have fractured, presumably due to water injection pressure,...
Adsorption of dithiophosphate and dithiophosphinate on chalcopyrite
Guler, T; Hicyilmaz, C; Gokagac, G; Ekmeci, Z (Elsevier BV, 2006-01-01)
Electrochemical behavior of chalcopyrite was investigated in the absence and presence of dithiophosphate (DTP) and dithiophosphinate (DTPI), selective thiols against Fe-sulfides in the flotation of sulfide ores, in potentiostatically controlled electrochemical condition. Diffuse reflectance Fourier transformation (DRIFT) spectroscopy was applied to determine the type of adsorbed collector species, and Hallimond tube flotation tests were performed to clarify the role of polarization potential and thiol colle...
Extraction of cobalt and copper from Küre pyrite concentrate
Çokgör, O.; Topkaya, Yavuz Ali (Elsevier BV, 1988)
Three methods were investigated for the extraction of cobalt, copper and gold from Kure pyrite concentrate. These were chloridizing roasting, chloridizing volatilization and sulphating roasting processes. For chloridizing roasting, the pyrite concentrate was dead roasted first to adjust sulfur content to about 4%. Then, the pyrite cinder obtained was mixed with NaCl and pyrite concentrate, and roasted to produce soluble chlorides of copper and cobalt. For chloridizing volatilization, copper, cobalt and g...
Citation Formats
H. Ipek, Y. Ucbas, and Ç. Hoşten, “Ternary-mixture grinding of ceramic raw materials,” MINERALS ENGINEERING, pp. 45–49, 2005, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56668.