Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Some peculiarities of nematic-isotropic liquid phase transitions in monomorphic and polymorphic mesogens
Date
2002-10-03
Author
Nesrullajev, Arif
Yurtseven, Hasan Hamit
Saliholu, Selami
Kazanc, Nadide
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
195
views
0
downloads
Cite This
In this study, the dynamics of the changes of the morphological properties in the nematic mesophase and in the heterophase regions of the phase transitions between the nematic mesophase and the isotropic liquid for the thermotropic mesogens have been investigated. Experimentally, we have obtained the thermal hysteresis for the investigated phase transitions. For the analysis of the phase transition temperatures and the peculiarities of the heterophase regions, the mean field theory has been used.
Subject Keywords
Mechanical Engineering
,
General Materials Science
,
Mechanics of Materials
,
Condensed Matter Physics
URI
https://hdl.handle.net/11511/56795
Journal
Materials Research Bulletin
DOI
https://doi.org/10.1016/s0025-5408(01)00794-2
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Flow transitions and flow localization in large-strain deformation of magnesium alloy
Sagapuram, Dinakar; Efe, Mert; Trumble, Kevin P.; Chandrasekar, Srinivasan (Elsevier BV, 2016-04-06)
Understanding transitions from homogeneous to localized flow, and mechanisms underlying flow localization, is of paramount importance for deformation processing of magnesium. In this study, a shear based deformation method is utilized for imposing large strains (similar to 1), under controllable strain rates (10-10(5)/s) and temperatures (80-300 degrees C), in order to examine flow patterns in a magnesium alloy. Based on microstructure characterization, deformation twinning is suggested to contribute to the...
A study of phase stability and mechanical properties of hydroxylapatite-nanosize alpha-alumina composites
Evis, Zafer (Elsevier BV, 2007-04-01)
Hydroxylapatite (HA)-nanosize alumina composites were synthesized to study their phase stability and mechanical properties. To make these composites, nanosize alpha-Al2O3 powder was used because of its better sinterability and densification as compared to nanosize gamma-Al2O3. The composites were air sintered without pressure and hot pressed in vacuum at 1100 degrees C and 1200 degrees C. In the composites, HA decomposed to tricalcium phosphate faster after the air sintering than hot pressing. Moreover, hex...
Two-dimensional transient dynamic response of orthotropic layered media
Abu Alshaikh, Ibrahim; Turhan, Dogan; Mengi, Yalcin (Springer Science and Business Media LLC; 2006-12-01)
In this study, two-dimensional transient dynamic response of orthotropic plane layered media is investigated. The plane multilayered media consist of N different generally orthotropic, homogeneous and linearly elastic layers with different ply angles. In the generally orthotropic layer, representing a ply reinforced by unidirectional fibers with an arbitrary orientation angle, the principal material directions do not coincide with body coordinate axes. The solution is obtained by employing a numerical techn...
Improvement of fracture resistance in a glass matrix optomechanical composite by minicomposite unit bridging
Dericioğlu, Arcan Fehmi (Elsevier BV, 2005-10-15)
Minicomposite unit bridging, which was experimentally determined to be the dominant toughening mechanism resulting in the R-curve behavior of the Al2O3-ZrO2 minicomposite-reinforced glass matrix optomechanical composite, was studied quantitatively using luminescence spectroscopy. Applied stress induced shift of the luminescence bands of the minicomposite reinforcement was calibrated. Using the experimentally obtained calibration curve, axial stresses could be mapped along the minicomposite embedded in the g...
A METHOD OF STRAIN AND STRESS-ANALYSIS OF COMPOSITES FOR NONLINEAR STRAIN DISTRIBUTION CASE
ARDIC, ES; BOLCAN, C; Kayran, Altan (Elsevier BV, 1994-12-01)
In this study, a method of strain and stress analysis is developed to determine the stress and strain fields in fibers and matrix of a laminated composite for the cases of nonlinear strain and stress distributions with high gradients. The strain values calculated by using a classical method are considered as input, and the strain fields at each layer are determined. These strain fields are then used as input to express the strains in fibers and matrix. In these processes the heterogeneity effects, which ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Nesrullajev, H. H. Yurtseven, S. Saliholu, and N. Kazanc, “Some peculiarities of nematic-isotropic liquid phase transitions in monomorphic and polymorphic mesogens,”
Materials Research Bulletin
, pp. 2007–2021, 2002, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56795.