Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Rebalancing the assembly lines with total squared workload and total replacement distance objectives
Date
2020-01-01
Author
Girit, Utku
Azizoğlu, Meral
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
304
views
0
downloads
Cite This
Assembly line balancing is an important and well recognised operations research problem. The current line balance may not stay optimal, even feasible, due to the disruptions in one or more workstations. In this study, after the disruption, we aim to rebalance the assembly line by considering the trade-off between workload balancing (fairness measure) and total replacement distance for the tasks assigned to the different workstations (stability measure). We try to generate all non-dominated objective function vectors for the defined fairness and stability measures. Two algorithms are developed: exact algorithm (classical approach) and tabu search algorithm. The results of the experiments have shown that the classical approach returns exact non-dominated objective vectors with up to 40 tasks and 7 workstations in one hour, and the tabu search algorithm returns approximate non-dominated objective vectors that are very close to their exact counterparts and can solve large sized instances with up to 94 tasks and 7 workstations in less than 10 s.
Subject Keywords
Management Science and Operations Research
,
Strategy and Management
,
Industrial and Manufacturing Engineering
URI
https://hdl.handle.net/11511/56860
Journal
International Journal of Production Research
DOI
https://doi.org/10.1080/00207543.2020.1823027
Collections
Department of Industrial Engineering, Article
Suggestions
OpenMETU
Core
Capacity allocation problem in flexible manufacturing systems: branch and bound based approaches
ÖZPEYNİRCİ, SELİN; Azizoğlu, Meral (Informa UK Limited, 2009-01-01)
This study considers an operation assignment and capacity allocation problem that arises in flexible manufacturing systems. The machines have limited time and tool magazine capacities and the available tools are limited. Our objective is to maximise total weight of assigned operations. We develop a branch and bound algorithm that finds the optimal solutions and a beam search algorithm that finds high quality solutions in polynomial time.
Rebalancing in assembly lines
Girit, Utku; Azizoğlu, Meral; Department of Industrial Engineering (2019)
Assembly line balancing is an important and well recognized operations research problem. The current balancing might not stay optimal for a long time due to the changing conditions. The changing conditions, like disruptions in one or more workstations, may cause some inefficiencies, even infeasibilities, for the current balance. In this study, after the disruption, we aim to rebalance the assembly line by considering the trade-off between workload balancing (efficiency measure) and total displacement amount...
Reassessing tradeoffs inherent to simultaneous maintenance and production planning
Batun, Sakine (Wiley, 2012-03-01)
Previous work has considered the simultaneous (as opposed to sequential) optimization of a maintenance policy and a production policy in a multi-product setting with random yield and product mix constraints. One of the sequential approaches to which the simultaneous approach is compared is a so-called first-come-first-served (FCFS) approach, i.e., an approach that generates randomized production policies that do not depend on the deterioration state of the machine. However, the model formulation for this ap...
Flexibility analysis: a methodology and a case study
Kahyaoglu, Y; Kayaligil, S; Buzacott, JA (Informa UK Limited, 2002-11-10)
A methodology for analysing manufacturing flexibility is proposed. A real-life case is discussed to demonstrate the proposed methodology. The case involves the grinding operations of an engine manufacturer. As an integral part of the methodology, statistical analyses using response surface methodology are carried out. Potential applications of the proposed methodology are discussed. Planning models and flexibility measure used are outlined in the appendices.
Analyzing the effects of inventory cost setting rules in a disassembly and recovery environment
Akcali, Elif; Bayındır, Zeynep Pelin (Informa UK Limited, 2008-01-01)
In this study we consider a disassembly and recovery facility receiving end-of-life products and facing demand for a specific part that is disassembled from the product and then recovered. The disassembly and recovery operations can be either performed before hand, or upon customer arrival. In the latter case, a discount on the selling price is applied to compensate the customer for waiting for the completion of the disassembly and recovery operations. One of the dificulties faced in planning for such a sys...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
U. Girit and M. Azizoğlu, “Rebalancing the assembly lines with total squared workload and total replacement distance objectives,”
International Journal of Production Research
, pp. 0–0, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56860.