Oscillation criteria for third-order nonlinear functional differential equations

2010-07-01
AKTAŞ, MUSTAFA FAHRİ
Tiryaki, A.
Zafer, Ağacık
In this work, we are concerned with oscillation of third-order nonlinear functional differential equations of the form
APPLIED MATHEMATICS LETTERS

Suggestions

Asymptotic behavior of solutions of differential equations with piecewise constant arguments
Akhmet, Marat (Elsevier BV, 2008-09-01)
The main goal of the work is to obtain sufficient conditions for the asymptotic equivalence of a linear system of ordinary differential equations and a quasilinear system of differential equations with piecewise constant argument.
Oscillation of Second-Order Sublinear Impulsive Differential Equations
Zafer, A. (Hindawi Limited, 2011)
Oscillation criteria obtained by Kusano and Onose (1973) and by Belohorec (1969) are extended to second-order sublinear impulsive differential equations of Emden-Fowler type: x ''(t) + p(t)vertical bar x(tau(t))vertical bar(alpha-1)x(tau(t)) = 0, t not equal theta(k); Delta x'(t)vertical bar(t=theta k) + q(k)vertical bar x(tau(theta(k)))vertical bar(alpha-1)x(tau(theta(k))) = 0; Delta x(t)vertical bar(t=theta k) = 0, (0 < alpha < 1) by considering the cases tau(t) <= t and tau(t) = t, respectively. Examples...
Oscillation of higher order neutral type difference equations
Zafer, Ağacık (1995-08-11)
In this work we are concerned with oscillation of solutions of the neutral difference equation of the form
Integral criteria for oscillation of third order nonlinear differential equations
AKTAŞ, MUSTAFA FAHRİ; Tiryaki, Aydın; Zafer, Ağacık (Elsevier BV, 2009-12-15)
In this paper we are concerned with the oscillation of third order nonlinear differential equations of the form
Forced oscillation of second-order nonlinear differential equations with positive and negative coefficients
ÖZBEKLER, ABDULLAH; Wong, J. S. W.; Zafer, Ağacık (Elsevier BV, 2011-07-01)
In this paper we give new oscillation criteria for forced super- and sub-linear differential equations by means of nonprincipal solutions.
Citation Formats
M. F. AKTAŞ, A. Tiryaki, and A. Zafer, “Oscillation criteria for third-order nonlinear functional differential equations,” APPLIED MATHEMATICS LETTERS, pp. 756–762, 2010, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56879.