Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Density functional theory calculations for mercury fulminate
Date
2004-12-31
Author
Turker, L
Erkoç, Şakir
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
174
views
0
downloads
Cite This
The structural and electronic properties of isolated neutral mercury fulminate molecule (C2N2O2Hg) have been investigated by performing density functional theory calculations at B3LYP level. The optimum geometry, vibrational frequencies, electronic structure, and some thermodynamical values of the molecule considered have been obtained in its ground state.
Subject Keywords
Physical and Theoretical Chemistry
,
Biochemistry
,
Condensed Matter Physics
URI
https://hdl.handle.net/11511/56880
Journal
JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
DOI
https://doi.org/10.1016/j.theochem.2004.08.048
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Quantum chemical investigation of thalidomide molecule
Erkoç, Şakir; Erkoc, F (Elsevier BV, 2005-04-14)
The structural and electronic properties of the thalidomide molecule have been investigated theoretically by performing semi-empirical molecular orbital (AM1) and density functional theory calculations. The geometry of the molecule has been optimized by AM1 method and the electronic properties of the molecule have been calculated by density functional theory in its ground state.
Structural and electronic properties of 'benzorods'
Erkoc, F (Elsevier BV, 2003-11-03)
The structural and electronic properties of benzorods, carbon nanorods made of benzen molecules, have been investigated systematically by performing semi-empirical self-consistent-field molecular-orbital theory calculations at AM1-RUF level. The benzorod represented by nC6 contains n benzonoid rings placed parallel to each other forms a stable structure.
Structure and electronic properties of heterofullerene C30B15N15
Erkoç, Şakir (Elsevier BV, 2004-09-27)
Structure and electronic properties of heterofullerene C30B15N15 has been investigated theoretically by performing semi-empirical molecular orbital calculation at PM3 level within RHF formalism and density functional theory at B3LYP level including MP2 correlation correction. The structure has been found stable in the ground state but endothermic. The isolated C30B15N15 has a net dipole moment value of about 3 Debyes, and frontier molecular orbital energy gap value of about I eV. These properties make this ...
Hydrogen storage capacity of Be@C-115 system
Türker, Burhan Lemi (Elsevier BV, 2005-05-20)
Semiempirical quantum chemical analysis of a Be doped single-walled, semicapped, armchair type nanotube, Be@C-115, was achieved at the level of PM3 (RHF) type calculations for some of its quantum chemical properties and hydrogen storage capacity. The Be@C-115 system was found to be capable of storing 1-5 hydrogen molecules as endohedral dopant(s), whereas the sixth hydrogen molecule was expelled out. All the structures, (Be+nH(2))@C-115 were found to be stable and endothermic. Moreover, the increasing numbe...
Theoretical investigation of quercetin and its radical isomers
Erkoc, E; Erkoc, F; Keskin, N (Elsevier BV, 2003-08-01)
The structural and electronic properties of quercetin and its five radical isomers have been investigated theoretically by performing semi-empirical molecular orbital theory calculations. The geometry of the systems have been optimized and the electronic properties of the systems considered have been calculated by semi-empirical self-consistend-field molecular orbital theory at the level AM1 within UHF formalism in their ground state. Conclusions have been drawn by comparing with experimental results.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
L. Turker and Ş. Erkoç, “Density functional theory calculations for mercury fulminate,”
JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
, pp. 139–142, 2004, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56880.