Relative consistency of projective reconstructions obtained from the same image pair

Otlu, Burcak
Atalay, Mustafa Ümit
Hassanpour, Reza
This study obtains projective reconstructions of an object or a scene from its image pair and measures relative consistency of these projective reconstructions. 3D points are estimated from an image pair using projective and epipolar geometry. Two measures are presented for verification of projective reconstructions with each other. These measures are based on the equality of ratios between the x-, y- and z-coordinates of 3D reconstructed points which are obtained from the same corresponding points. This information is used for measuring the relative consistency of projective reconstructions obtained from the same image pair.


Camera auto-calibration using a sequence of 2D images with small rotations
Hassanpour, R; Atalay, Mehmet Volkan (Elsevier BV, 2004-07-02)
In this study, we describe an auto-calibration algorithm with fixed but unknown camera parameters. We have modified Triggs' algorithm to incorporate known aspect ratio and skew values to make it applicable for small rotation around a single axis. The algorithm despite being a quadratic one is easy to solve. We have applied the algorithm to some artificial objects with known size and dimensions for evaluation purposes. In addition, the accuracy of the algorithm has been verified using synthetic data. The des...
On output independence and complementariness in rank-based multiple classifier decision systems
Saranlı, Afşar (Elsevier BV, 2001-12-01)
This study presents a theoretical analysis of output independence and complementariness between classifiers in a rank-based multiple classifier decision system in the context of the partitioned observation space theory. To enable such an analysis, an information theoretic interpretation of a rank-based multiple classifier system is developed and basic concepts from information theory are applied to develop measures for output independence and complementariness. It is shown that output independence of classi...
Continuous dimensionality characterization of image structures
Felsberg, Michael; Kalkan, Sinan; Kruger, Norbert (Elsevier BV, 2009-05-04)
Intrinsic dimensionality is a concept introduced by statistics and later used in image processing to measure the dimensionality of a data set. In this paper, we introduce a continuous representation of the intrinsic dimension of an image patch in terms of its local spectrum or, equivalently, its gradient field. By making use of a cone structure and barycentric co-ordinates, we can associate three confidences to the three different ideal cases of intrinsic dimensions corresponding to homogeneous image patche...
One-dimensional representation of two-dimensional information for HMM based handwriting recognition
Arica, N; Yarman Vural, Fatoş Tunay (Elsevier BV, 2000-06-01)
In this study, we introduce a one-dimensional feature set, which embeds two-dimensional information into an observation sequence of one-dimensional string, selected from a code-book. It provides a consistent normalization among distinct classes of shapes, which is very convenient for Hidden Markov Model (HMM) based shape recognition schemes. The normalization parameters, which maximize the recognition rate, are dynamically estimated in the training stage of HMM. The proposed recognition system is tested on ...
A statistical approach to sparse multi-scale phase-based stereo
Ulusoy, İlkay (Elsevier BV, 2007-09-01)
In this study, a multi-scale phase based sparse disparity algorithm and a probabilistic model for matching uncertain phase are proposed. The features used are oriented edges extracted using steerable filters. Feature correspondences are estimated using phase-similarity at multiple scale using a magnitude weighting scheme. In order to achieve sub-pixel accuracy in disparity, we use a fine tuning procedure which employs the phase difference between corresponding feature points. We also derive a probabilistic ...
Citation Formats
B. Otlu, M. Ü. Atalay, and R. Hassanpour, “Relative consistency of projective reconstructions obtained from the same image pair,” INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, pp. 649–663, 2006, Accessed: 00, 2020. [Online]. Available: