Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Airborne laser scanning data for snow covered biomass estimation
Date
2009-04-13
Author
Vazirabad, Yashar Fallah
Karslıoğlu, Mahmut Onur
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
194
views
0
downloads
Cite This
Airborne laser scanning provides reliable terrain data in terms of 3D coordinates. High resolutions Digital Terrain Models (DTM) are in use for many applications, including change detection of surfaces. Also the estimation of the snow depth by making use of Airborne Laser Scanning (ALS) data acquired in summer and winter is a subject of current investigations. However estimating snow depth seems problematic in vegetation covered areas. This work focuses on the investigation of the snow depth estimation using snow covered vegetation effect. In this aspect a method based on segmentation filter is proposed for snow depth calculation in vegetation covered area by using ALS data. The method demonstrates the performance of the segmentation filter with respect to the adaptability on the vegetated snow covered area. Additionally the influence of the snow covered biomass on the snow depth model is also investigated.
Subject Keywords
General Earth and Planetary Sciences
URI
https://hdl.handle.net/11511/56981
Journal
JOURNAL OF APPLIED REMOTE SENSING
DOI
https://doi.org/10.1117/1.3127447
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Geometric correction accuracy of IRS-1D PAN imagery using topographic map versus GPS control points
Turker, M; Gacemer, AO (Informa UK Limited, 2004-03-01)
Geometric correction accuracy of IRS-1D panchromatic imagery was investigated using GPS- and 1 : 25 000 scale topographic map-derived control points. The differentially corrected GPS-derived coordinates provided markedly more accurate results than did uncorrected handheld GPS- and map-derived GCPs. The rms error value of differentially corrected GPS-derived control points based on second-degree polynomial was in the order of +/-3 m. Geometric corrections made with second-degree polynomials, using both the m...
Local Primitive Pattern for the Classification of SAR Images
AYTEKİN, orsan; KOÇ, mehmet; Ulusoy, İlkay (Institute of Electrical and Electronics Engineers (IEEE), 2013-04-01)
This paper proposes a new method for the classification of synthetic aperture radar (SAR) images based on a novel feature vector. The method aims at combining the intensity information of pixels with spatial information and structural relationships. Unlike classical approaches which define a static neighborhood via a rectangular moving window of predefined size and relate spatial information for each center pixel to all the pixels within that window, the local primitives (LPs) proposed in this study provide...
Hierarchical classification of Sentinel 2-a images for land use and land cover mapping and its use for the CORINE system
Demirkan, Doga C.; Koz, Alper; Duzguna, H. Sebnem (SPIE-Intl Soc Optical Eng, 2020-06-01)
The aim of this study is to investigate the potential of the Sentinel-2 satellite for land use and land cover (LULC) mapping. The commonly known supervised classification algorithms, support vector machines (SVMs), random forest (RF), and maximum likelihood (ML) classification are adopted for investigation along with a proposed hierarchical classification model based on a coordination of information on the environment land cover system. The main classes for land cover and mapping in the proposed hierarchica...
Evaluation of the NDVI in plant community composition mapping: a case study of Tersakan Valley, Amasya County, Turkey
DOĞAN, Hakan Mete; Celep, Ferhat; Karaer, Fergan (Informa UK Limited, 2009-01-01)
Mapping the composition of plant community types requires reliable spatial data obtained from field surveys and satellite-derived indices. The normalized difference vegetation index (NDVI) is the simplest and most frequently used index in plant applications. If relationships between the NDVI and plant cover abundance are determined, this information can be used in the mapping process. In this study, we investigated these possible connections for mapping the plant community composition of Tersakan Valley in ...
Evaluation of cross-track illumination in EO-1 Hyperion imagery for lithological mapping
San, B. Taner; Süzen, Mehmet Lütfi (Informa UK Limited, 2011-01-01)
Hyperspectral remote sensing data is a powerful tool for discriminating lithological units and for the preparation of mineral maps for alteration studies. The spaceborne hyperspectral Hyperion sensor, despite its narrow swath width (similar to 7.5 km), possesses great potential with its 196 channels within the wavelength range 426.82-2395.50 nm. Although it has many advantages such as low cost and on-demand coverage, much uncertainty exists in the utility of its applications. For example, poor signal-to-noi...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Y. F. Vazirabad and M. O. Karslıoğlu, “Airborne laser scanning data for snow covered biomass estimation,”
JOURNAL OF APPLIED REMOTE SENSING
, pp. 0–0, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56981.