Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Stability analysis of graphene nanoribbons by molecular dynamics simulations
Date
2008-04-01
Author
Dugan, N.
Erkoç, Şakir
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
259
views
0
downloads
Cite This
In this work, stability of graphene nanoribbons are investigated using molecular dynamics. Simulations include heating armchair and zigzag-edged nanoribbons of widths varying between one and nine hexagonal rings until the bonds between carbon atoms start to break. Breaking temperatures and binding energies per atom for different widths are presented for both armchair and zigzag-edged cases. A nontrivial relation between stability and width is observed and discussed.
Subject Keywords
Electronic, Optical and Magnetic Materials
,
Condensed Matter Physics
URI
https://hdl.handle.net/11511/57028
Journal
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS
DOI
https://doi.org/10.1002/pssb.200743461
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Molecular-dynamics simulations of surface and bulk properties of Zn, Cd, and ZnCd systems
Amirouche, L; Erkoç, Şakir (Wiley, 2004-02-01)
Surface and bulk properties of Zn, Cd, and ZnCd systems have been investigated by performing molecular-dynamics simulations using a recently developed empirical many-body potential energy function for these systems, which comprices two- and three-body atomic interactions. Surface reconstruction and multilayer relaxation on clean surfaces, adatom on surface, substitutional atom on surface and bulk materials, and vacancy on surface and bulk materials have been studied extensively. (C) 2004 WILEY-VCH Verlag Gm...
Phonon dispersions and elastic constants of disordered Pd-Ni alloys
Kart, SO; Tomak, Mehmet; Cagin, T (Elsevier BV, 2005-01-31)
Phonon frequencies of Pd-Ni alloys are calculated by molecular dynamics (MD) simulation. Lattice dynamical properties computed from Sutton-Chen (SC) and quantum Sutton-Chen (Q-SC) potentials as a function of temperature are compared with each other. We present all interatomic force constants up to the 8th nearest-neighbor shell obtained by using the calculated potential. Elastic constants evaluated by two methods are consistent with each other. The transferability of the potential is also tested. The result...
Electronic structure of carbon nanotubes: AM1-RHF calculations
Erkoç, Şakir; Turker, L (Elsevier BV, 1999-07-01)
We have investigated the electronic structure of optimized open-ended single-wall carbon nanotubes with armchair and zigzag geometries. The calculations were performed using AM1-RHF semiempirical molecular orbital method. It has been found that the density of states of the zigzag model is more sensitive to the tube size than that of the armchair model.
Quantum chemical treatment of Li/Li+ doped defected carbon nanocapsules
Pekoez, Rengin; Erkoç, Şakir (Elsevier BV, 2008-06-01)
Structural and electronic properties of and () doped mono-vacancy defected carbon nanocapsule (CNC) systems have been investigated theoretically by performing semi-empirical self-consistent-field (SCF) molecular orbital (MO) and density functional theory (DFT) methods. Semi-empirical SCF MO method at PM3 level has been considered to optimize fully the geometry of the CNCs in their ground states. The total energies of these structures were calculated using B3LYP exchange-correlation functional in DFT metho...
STRUCTURAL STABILITY AND ENERGETICS OF FCC METAL MICROCLUSTERS - EMPIRICAL MANY-BODY POTENTIAL-ENERGY FUNCTION CALCULATION
Erkoç, Şakir (Wiley, 1990-09-01)
The structural stability and energetics of microclusters containing 3 to 7 atoms of f.c.c. metal elements are investigated. A recently developed empirical many‐body potential function (PEF) is used in the calculations, which comprises two‐ and threebody atomic interactions. The PEF satisfies both, bulk cohesive energy and stability condition. It is found that the energetically most stable structures of microclusters are in compact form.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
N. Dugan and Ş. Erkoç, “Stability analysis of graphene nanoribbons by molecular dynamics simulations,”
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS
, pp. 695–700, 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/57028.