Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Energetics and structural stability of lanthanum microclusters
Date
1999-12-03
Author
Erkoç, Şakir
Bastug, T
Hirata, M
Tachimori, S
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
135
views
0
downloads
Cite This
The energetics and the structural stability of lanthanum microclusters (La-n) have been investigated by performing relativistic density functional calculations and molecular dynamics (MD) simulations. An empirical potential energy function has been parameterised for a lanthanum element by using the dimer interaction potential energy profile of La-2, which is calculated by relativistic density functional method. Stable structures of the microclusters for n = 3-13 have been determined by MD simulation and electronic structures have been calculated by relativistic density functional method. MD simulations have also been performed for spherical clusters with sizes n = 19-157.
Subject Keywords
Molecules
,
Approximation
,
Electron
,
Slater SCF calculations
URI
https://hdl.handle.net/11511/57106
Journal
CHEMICAL PHYSICS LETTERS
DOI
https://doi.org/10.1016/s0009-2614(99)01154-9
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Mechanical properties of CdZnTe nanowires under uniaxial stretching and compression: A molecular dynamics simulation study
Kurban, Mustafa; Erkoç, Şakir (2016-09-01)
Structural and mechanical properties of ternary CdZnTe nanowires have been investigated by performing molecular dynamics simulations using an atomistic potential. The simulation procedures are carried out as uniaxial stretching and compression at 1 K and 300 K. The results demonstrate that the mechanical properties of CdZnTe ternary nanowires show significantly a dependence on size and temperature under uniaxial stretching and compression.
Segregation formation, thermal and electronic properties of ternary cubic CdZnTe clusters: MD simulations and DFT calculations
KURBAN, MUSTAFA; Erkoç, Şakir (Elsevier BV, 2017-04-01)
Surface and core formation, thermal and electronic properties of ternary cubic CdZnTe clusters are investigated by using classical molecular dynamics (MD) simulations and density functional theory (DFT.) calculations. In this work, MD simulations of the CdZnTe clusters are performed by means of LAMMPS by using bond order potential (BOP). MD simulations are carried out at different temperatures to study the segregation phenomena of Cd, Zn and Te atoms, and deviation of clusters and heat capacity. After that,...
Structural Properties of Silicon Nanorods Under Strain: Molecular Dynamics Simulations
Ozdamar, Burak; Erkoç, Şakir (American Scientific Publishers, 2013-01-01)
Structural properties of silicon nanorods generated from low-index plane surfaces (100), (110), and (111) with different cross-sections have been investigated by performing classical molecular dynamics simulations. An atomistic potential function consisting of a combination of two- and three-body interactions has been used to represent the interactions among the atoms. Strain has been applied to the generated Si nanorods along the uniaxial rod direction at two different temperatures; 1 K and 300 K. Si nanor...
The Investigation of Electronic, Elastic and Vibrational Properties of an Interlanthanide Perovskite: PrYbO3
KADEROĞLU, ÇAĞIL; SÜRÜCÜ, GÖKHAN; ERKİŞİ, AYTAÇ (2017-10-01)
The structural, mechanical, electronic and lattice dynamical properties of the PrYbO3 compound from the ABO(3)-type perovskite family have been investigated by performing the first-principles density functional theory calculations using the generalized-gradient approximation (GGA) with corrected Coulomb interactions (GGA+U). Structural parameters, formation energies and phase transition pressures for the five possible phases of this compound have been calculated. Then, the spin-dependent electronic band str...
Thermal stability of Benzorod arrays: Molecular-dynamics simulations
Malcıoğlu, Osman Barış (World Scientific Pub Co Pte Lt, 2005-05-01)
A set of Benzorod arrays on a graphene substrate has been investigated by performing classical molecular-dynamics simulations. Benzorod is composed of aligned and dehydrogenated benzene rings that are stacked to form a rod-like structure. It has been found that the arrays considered axe thermally stable up to elevated temperatures, with a dependence on length.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ş. Erkoç, T. Bastug, M. Hirata, and S. Tachimori, “Energetics and structural stability of lanthanum microclusters,”
CHEMICAL PHYSICS LETTERS
, pp. 203–209, 1999, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/57106.