Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Zirconium microclusters: molecular-dynamics simulations and density functional calculations
Date
2000-09-01
Author
Bastug, T
Erkoç, Şakir
Hirata, M
Tachimori, S
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
203
views
0
downloads
Cite This
Structural stability and energetics of zirconium microclusters Zr, (n = 3-13) have been investigated by molecular-dynamics simulations and density functional calculations. A semi-empirical modelpotential energy function has been parametrized for the zirconium element by using the dimer interaction potential energy profile of Zr-2, which is calculated by the relativistic density functional method. Stable structures of the microclusters for n = 3-13 have been determined by a molecular-dynamics simulation. Relativistic density functional calculations have been performed for n = 3-7. It has been found that zirconium microclusters prefer to form three-dimensional compact structures.
Subject Keywords
Microclusters
,
Zirconium
,
Density functional theory
,
Molecular dynamics
URI
https://hdl.handle.net/11511/57360
Journal
PHYSICA E
DOI
https://doi.org/10.1016/s1386-9477(00)00149-1
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Anisotropic Elastic and Lattice Dynamical Properties of Cr2AB MAX Phases Compounds
Gencer, Ayşenur; Yılmaz, İnanç; Bayhan, Ülkü; Sürücü, Gökhan (2019-03-01)
The structural, mechanical and lattice dynamical properties of the MAX Phase borides compounds Cr2AB (A= Al, P, Si) have been investigated using the first principles calculations with the generalized gradient approximation (GGA) based on Density Functional Theory (DFT). The obtained negative formation energies of Cr2AB indicate that these compounds are stable and could be synthesized. Some basic physical parameters such as lattice constants, elastic constants, bulk modulus, Shear modulus, Young’s modulus, a...
Cluster, surface and bulk properties of ZnCd binary alloys: Molecular-dynamics simulations
Erkoç, Şakir (2005-01-01)
The structural and electronic properties of isolated neutral Zn Cd-n clusters for m+n <= 3 have been investigated by performing density functional theory calculations at B3LYP level. The optimum geometries, vibrational frequencies, electronic structures, and the possible dissosiation channels of the clusters considered have been obtained. An empirical many-body potential energy function (PEF), which comprices two- and three-body atomic interactions, has been developed to investigate the structural features ...
Structural and electronic properties of InmSen microclusters: density functional theory calculations
Erkoc, S; Katırcıoğlu, Şenay; Yilmaz, T (2001-06-15)
We have investigated the structural and electronic properties of isolated InmSen microclusters for m + n less than or equal to 4 by performing density functional theory calculations. We have obtained the optimum geometries, possible dissociation channels and the electronic structure of the clusters considered.
Molecular-dynamics simulations of gold clusters
Bastug, T; Hirata, M; Varga, S; Fricke, B; Erkoç, Şakir; Mukoyama, T (2001-01-01)
Structural stability and energetics of gold microclusters Aun (n=313,19–555) have been investigated by molecular-dynamics simulations. A model potential energy function has been parametrized for the gold element by using the dimer interaction potential energy profile of the Au2, which is calculated by relativistic density functional method. Stable structures of the microclusters for (n=3–13) have been determined by a molecular-dynamics simulation. It has been found that gold microclusters prefer to form thr...
Density functional theory calculations of small ZnmSn clusters
Katırcıoğlu, Şenay (2001-07-16)
We have investigated the structural and electronic properties of isolated neutral ZnmSn clusters for m + n less than or equal to 4 by performing density functional theory calculations at B3LYP level. We have obtained the optimum geometries, the electronic structures, and the possible dissociation channels of the clusters considered.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. Bastug, Ş. Erkoç, M. Hirata, and S. Tachimori, “Zirconium microclusters: molecular-dynamics simulations and density functional calculations,”
PHYSICA E
, pp. 223–229, 2000, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/57360.