Oscillation of even order nonlinear delay dynamic equations on time scales

Download
2013-03-01
Erbe, Lynn
Mert, Raziye
Peterson, Allan
Zafer, Ağacık
One of the important methods for studying the oscillation of higher order differential equations is to make a comparison with second order differential equations. The method involves using Taylor's Formula. In this paper we show how such a method can be used for a class of even order delay dynamic equations on time scales via comparison with second order dynamic inequalities. In particular, it is shown that nonexistence of an eventually positive solution of a certain second order delay dynamic inequality is sufficient for oscillation of even order dynamic equations on time scales. The arguments are based on Taylor monomials on time scales.
CZECHOSLOVAK MATHEMATICAL JOURNAL

Suggestions

Stability criterion for second order linear impulsive differential equations with periodic coefficients
Guseinov, G. Sh.; Zafer, Ağacık (Wiley, 2008-01-01)
In this paper we obtain instability and stability criteria for second order linear impulsive differential equations with periodic coefficients. Further, a Lyapunov type inequality is also established. (C) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Interval oscillation criteria for second order super-half linear functional differential equations with delay and advanced arguments
Zafer, Ağacık (Wiley, 2009-09-01)
Sufficient conditions are established for oscillation of second order super half linear equations containing both delay and advanced arguments of the form
Non-commutative holomorphic functions in elements of a Lie algebra and the absolute basis problem
Dosi (Dosiev), A. A. (IOP Publishing, 2009-11-01)
We study the absolute basis problem in algebras of holomorphic functions in non-commuting variables generating a finite-dimensional nilpotent Lie algebra g. This is motivated by J. L. Taylor's programme of non-commutative holomorphic functional calculus in the Lie algebra framework.
Least-squares differential quadrature time integration scheme in the dual reciprocity boundary element method solution of diffusive-convective problems
Bozkaya, Canan (Elsevier BV, 2007-01-01)
Least-squares differential quadrature method (DQM) is used for solving the ordinary differential equations in time, obtained from the application of dual reciprocity boundary element method (DRBEM) for the spatial partial derivatives in diffusive-convective type problems with variable coefficients. The DRBEM enables us to use the fundamental solution of Laplace equation, which is easy to implement computation ally. The terms except the Laplacian are considered as the nonhomogeneity in the equation, which ar...
Application of the boundary element method to parabolic type equations
Bozkaya, Nuray; Tezer-Sezgin, Münevver; Department of Mathematics (2010)
In this thesis, the two-dimensional initial and boundary value problems governed by unsteady partial differential equations are solved by making use of boundary element techniques. The boundary element method (BEM) with time-dependent fundamental solution is presented as an efficient procedure for the solution of diffusion, wave and convection-diffusion equations. It interpenetrates the equations in such a way that the boundary solution is advanced to all time levels, simultaneously. The solution at a requi...
Citation Formats
L. Erbe, R. Mert, A. Peterson, and A. Zafer, “Oscillation of even order nonlinear delay dynamic equations on time scales,” CZECHOSLOVAK MATHEMATICAL JOURNAL, pp. 265–279, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/57401.